首页> 美国卫生研究院文献>Journal of Neurophysiology >A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces
【2h】

A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces

机译:闭环仿真器用于研究反馈控制在脑机接口中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural prosthetic systems seek to improve the lives of severely disabled people by decoding neural activity into useful behavioral commands. These systems and their decoding algorithms are typically developed “offline,” using neural activity previously gathered from a healthy animal, and the decoded movement is then compared with the true movement that accompanied the recorded neural activity. However, this offline design and testing may neglect important features of a real prosthesis, most notably the critical role of feedback control, which enables the user to adjust neural activity while using the prosthesis. We hypothesize that understanding and optimally designing high-performance decoders require an experimental platform where humans are in closed-loop with the various candidate decode systems and algorithms. It remains unexplored the extent to which the subject can, for a particular decode system, algorithm, or parameter, engage feedback and other strategies to improve decode performance. Closed-loop testing may suggest different choices than offline analyses. Here we ask if a healthy human subject, using a closed-loop neural prosthesis driven by synthetic neural activity, can inform system design. We use this online prosthesis simulator (OPS) to optimize “online” decode performance based on a key parameter of a current state-of-the-art decode algorithm, the bin width of a Kalman filter. First, we show that offline and online analyses indeed suggest different parameter choices. Previous literature and our offline analyses agree that neural activity should be analyzed in bins of 100- to 300-ms width. OPS analysis, which incorporates feedback control, suggests that much shorter bin widths (25–50 ms) yield higher decode performance. Second, we confirm this surprising finding using a closed-loop rhesus monkey prosthetic system. These findings illustrate the type of discovery made possible by the OPS, and so we hypothesize that this novel testing approach will help in the design of prosthetic systems that will translate well to human patients.
机译:神经修复系统试图通过将神经活动解码为有用的行为命令来改善重度残疾人的生活。这些系统及其解码算法通常使用以前从健康动物那里收集的神经活动“离线”开发,然后将解码的运动与伴随记录的神经活动的真实运动进行比较。但是,这种离线设计和测试可能会忽略实际假体的重要功能,最明显的是反馈控制的关键作用,这使用户能够在使用假体时调整神经活动。我们假设理解和优化设计高性能解码器需要一个实验平台,在该平台上,人类处于各种候选解码系统和算法的闭环状态。对于特定的解码系统,算法或参数,对象在多大程度上可以利用反馈和其他策略来改善解码性能,这一点仍待探索。闭环测试可能会提出与离线分析不同的选择。在这里,我们问一个健康的人类受试者,使用由合成神经活动驱动的闭环神经假体,是否可以指导系统设计。我们使用此在线假体模拟器(OPS)根据当前最新解码算法的关键参数(卡尔曼滤波器的bin宽度)优化“在线”解码性能。首先,我们表明离线和在线分析确实提出了不同的参数选择。先前的文献和我们的离线分析都同意,应在100到300毫秒宽的区间内分析神经活动。结合了反馈控制的OPS分析表明,更短的bin宽度(25–50 ms)产生了更高的解码性能。其次,我们使用闭环恒河猴假体系统确认了这一令人惊讶的发现。这些发现说明了OPS可能进行的发现类型,因此我们假设这种新颖的测试方法将有助于设计可很好地转化为人类患者的假体系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号