首页> 美国卫生研究院文献>Frontiers in Neuroscience >A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments
【2h】

A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments

机译:使用动态姿势协同来协调混合行走神经假体的控制方案:理论和实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
机译:将功能性电刺激(FES)与下肢外骨骼动力结合在一起的混合行走神经假体可用于恢复截瘫患者的行走能力。它提供了FES的治疗优势和动力外骨骼的扭矩可靠性。此外,通过FES利用肌肉的代谢力,混合动力组合具有降低动力消耗和减小动力外骨骼中执行器尺寸的潜力。然而,由于FES和电动机的组合使用,其控制设计必须克服执行器冗余的挑战。此外,在控制设计过程中必须考虑动态干扰,例如机电延迟(EMD)和肌肉疲劳。尽管FES和电动机的动力不同,但仍可确保稳定性和控制性能。在本文中,提出了一种通用框架,用于协调多个步态控制肌肉与电动机的FES。以肌肉协同作用为灵感的控制框架用于派生控制器,其主要目的是解决执行器冗余问题。肌肉FES与电动机之间的动态姿势协同作用是通过优化人工生成的,并在激活时产生关键的动态姿势。这些协同作用被用于控制系统的前馈路径。动态表面控制技术(经延迟补偿项修改)用作反馈控制器,以解决模型不确定性,级联的肌肉激活动力学和EMD。为了解决肌肉疲劳,根据基于模型的疲劳估计,逐渐增加前馈路径中的刺激水平。基于Lyapunov的稳定性方法用于导出控制器并保证其稳定性。在一个健康的受试者和脊髓不完全损伤的人身上,通过实验证明了基于协同作用的控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号