首页> 美国卫生研究院文献>other >Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand
【2h】

Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

机译:高湿度改变白桦林土壤细菌群落结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.
机译:土壤微生物在森林生态系统中起着基本作用,并能对环境变化做出快速反应。同时,随着温度升高,气候变化情景还预测了波罗的海径流区域的水文循环将加剧。这项研究的目的是通过使用自由空气湿度调节设备(FAHM)来评估空气湿度升高对白桦(Betula pendula Roth。)林分的顶部土壤微生物群落结构的影响。使用细菌特异性16S rRNA基因片段的高通量测序和反硝化相关基因的定量分析了大块土壤和桦树根际的细菌群落结构。空气湿度的增加改变了土壤和根际细菌群落结构,而空气湿度升高引起的细菌群落变化与土壤非生物和生物变量的改变有关。网络分析表明,土壤细菌群落结构单元的变化是由非生物条件的改变(例如散装土壤中的pH值升高)解释的,而在根际中,吸收性根形态的变化具有较高的影响。在根系形态特征中,吸收根的直径与细菌群落结构最相关。空气湿度升高下细菌群落结构的变化与土壤中碳,氮和磷的转化以及矿物的风化过程有关。空气湿度的增加降低了根际细菌群落中的nir和nosZ基因丰度。桦木林分土壤中较高的空气湿度不会影响反硝化对N2O排放的潜在贡献。此外,研究揭示了生态系统适应空气湿度升高的细菌群落结构,大量反硝化相关基因与桦木吸收根形态之间的紧密联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号