首页> 美国卫生研究院文献>other >Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study
【2h】

Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study

机译:使用体内IVUS数据和3D FSI模型量化患者特定的冠状动脉材料特性及其对应力/应变计算的影响:一项先导研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid–structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young’s modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346 kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5 % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84 kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150–180 % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50–75 %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50–75 % stress and 150–180 % strain variations.
机译:计算模型已被用于计算斑块应力和应变以进行斑块进展和破裂研究。提出了一种基于血管内超声(IVUS)的建模方法来量化体内血管材料的特性,以进行更准确的应力/应变计算。从一名患者的体内Cine IVUS和VH-IVUS冠状动脉斑块数据获得了知情同意。 CINE IVUS数据和具有轴向拉伸的3D薄片模型用于确定患者特定的血管材料特性。构造了二十个具有离体和体内材料特性以及各种轴向和周向收缩组合的完整3D流体-结构相互作用模型,以研究材料刚度对应力/应变计算的影响。对于离体人斑样品和IVUS数据中的两个切片(S6和S18),在拉伸比区间[1.0、1.1]上的周向杨氏模量大约为1631、641和346 kPa。使用具有5%轴向收缩率和适当圆周收缩率的离体,S6和S18材料的模型的平均管腔应力/应变值分别为72.76、81.37、101.84 kPa和0.0668、0.1046和0.1489。 S18材料模型的平均盖应变值比离体材料模型的平均盖应变值高150–180%。帽盖平均应力值的相应百分比为50–75%。轴向和周向收缩率下降的考虑导致应力和应变过高估计。体内血管的材料特性可能比来自体外数据的材料要软得多。材料刚度的变化可能会导致50-75%的应力和150-180%的应变变化。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号