首页> 美国卫生研究院文献>other >Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model
【2h】

Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model

机译:对网络拓扑进行小的修改可以在平衡皮层模型中诱发随机双稳态尖峰动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that share physiological properties and location, but differ in their connectivity.
机译:定向随机图模型经常成功地用于对化学突触连接的皮层神经元网络的种群动态进行建模。实验结果一致地揭示了神经元网络拓扑结构是复杂的,但是从某种意义上说,它与随机网络在统计上有所不同,并且对于生理学上不同的神经元类别也有所不同。这表明其子网络具有不同拓扑结构的复杂网络模型可能是随机网络的一种有用且在生物学上更现实的选择。在这里,我们证明了在皮层小区域中经常观察到的平衡激发和抑制作用,在波动驱动动力学的其他标准神经元尺度模型中可以暂时消失,这仅仅是因为随机网络拓扑被复杂的聚类拓扑所取代,而没有改变神经元的度数。在这个网络中,一小部分细胞的抑制作用仅来自其局部簇之外,这是双稳态种群动态的原因,其中这些细胞的不同簇不规则地从稀疏发射状态切换到活跃状态。当这些单元格的簇足够频繁地突波以引起彼此之间强烈的不平衡正反馈时,就会发生向高活性状态的转变。过渡回稀疏激发状态的过程取决于偶尔收到的非局部抑制量的巨大波动。模型中的神经元的内在动力学和内向度是均质的,但是它们参与的各种定向反馈基元的丰度却不同。我们的发现表明:(i)模型和模拟应考虑因神经元和突触类别而异的复杂结构; (ii)具有相似内在特性的神经元的动力学差异可能是由于它们在独特的本地网络中的成员所引起的; (iii)识别具有相同生理特性和位置但在连通性方面不同的神经元很重要。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(9),4
  • 年度 -1
  • 页码 e88254
  • 总页数 21
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号