首页> 美国卫生研究院文献>other >Identifying a static nonlinear structure in a biological system using noisy sparse data
【2h】

Identifying a static nonlinear structure in a biological system using noisy sparse data

机译:使用嘈杂稀疏数据识别生物系统中的静态非线性结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When part of a biological system cannot be investigated directly by experimentation, we face the problem of structure identification: how can we construct a model for an unknown part of a mostly-known system using measurements gathered from its input and output? This problem is especially difficult to solve when the measurements available are noisy and sparse, i.e. widely and unevenly spaced in time, as is common when measuring biological quantities at the cellular level. Here we present a procedure to identify a static nonlinearity embedded between two dynamical systems using noisy, sparse measurements. To reduce the level of error caused by measurement noise, we introduce the concept of weighted-sum predictability. If we make the input and output subsystems weighted-sum predictable and normalize the measurements to their weighted sum, we achieve better noise reduction than through normalizing to a loading control. We then interpolate the normalized measurements to obtain continuous input and output signals, with which we solve directly for the input-output characteristics of the unknown static nonlinearity. We demonstrate the effectiveness of this structure identification procedure by applying it to identify a model for ergosterol sensing by the proteins Sre1 and Scp1 in fission yeast. Simulations with this model produced outputs consistent with experimental observations. The techniques introduced here will provide researchers with a new tool by which biological systems can be identified and characterized.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号