首页> 美国卫生研究院文献>other >Probing Residue-Specific Interactions in the Stabilization of Proteins Using High-Resolution NMR: A Study of Disulfide Bond Compensation
【2h】

Probing Residue-Specific Interactions in the Stabilization of Proteins Using High-Resolution NMR: A Study of Disulfide Bond Compensation

机译:探索在蛋白质的稳定残留特异性相互作用采用高分辨率核磁共振:二硫键赔偿问题研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well established that the oxidation state of cysteine residues in proteins are critical to overall physical stability. The presence of disulfide bonds most often imparts thermodynamic stability, and as such, engineered disulfide bonds have become a means for improving the viability of protein therapeutics. In some cases, however, disulfide bonds can diminish stability. Because proteins are held together by numerous weak interactions, understanding the mechanisms by which stabilization is achieved is important to the design of new biotechnology products that better resist unfolding and aggregation. Mechanistic information describing how specific interactions influence stability is lacking, in part because the techniques typically used to study inherent stability do not provide sufficient detail. In the present study, a model protein system, phosphatase of regenerating liver (PRL-1), was used to investigate the role of cysteine residues on physical stability. A combination of chemical modulation and mutagenesis was employed to alter the redox state of the protein, and the effects were observed using a combination of low- and high-resolution methods. Specifically, solution NMR data revealed the stability of PRL-1 depends on cooperation between local interactions with the Cys side chains. This approach provides a means to better understand how protein stabilization is achieved.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号