首页> 美国卫生研究院文献>other >Challenges for the Modern Science in its Descend Towards Nano Scale
【2h】

Challenges for the Modern Science in its Descend Towards Nano Scale

机译:走向纳米尺度的现代科学挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current rise in the interest in physical phenomena at nano spatial scale is described hereby as a natural consequence of the scientific progress in manipulation with matter with an ever higher sensitivity. The reason behind arising of the entirely new field of nanoscience is that the properties of nanostructured materials may significantly differ from their bulk counterparts and cannot be predicted by extrapolations of the size-dependent properties displayed by materials composed of microsized particles. It is also argued that although a material can comprise critical boundaries at the nano scale, this does not mean that it will inevitably exhibit properties that endow a nanomaterial. This implies that the attribute of “nanomaterial” can be used only in relation with a given property of interest. The major challenges faced with the expansion of resolution of the materials design, in terms of hardly reproducible experiments, are further discussed. It is claimed that owing to an unavoidable interference between the experimental system and its environment to which the controlling system belongs, an increased fineness of the experimental settings will lead to ever more difficulties in rendering them reproducible and controllable. Self-assembly methods in which a part of the preprogrammed scientific design is substituted with letting physical systems spontaneously evolve into attractive and functional structures is mentioned as one of the ways to overcome the problems inherent in synthetic approaches at the ultrafine scale. The fact that physical systems partly owe their properties to the interaction with their environment implies that each self-assembly process can be considered a co-assembly event.
机译:在纳米空间尺度上对物理现象的兴趣的当前上升在此被描述为对具有更高灵敏度的物质进行处理的科学进展的自然结果。出现纳米科学的全新领域的原因是,纳米结构材料的性质可能与它们的本体相当不同,并且无法通过由微颗粒组成的材料所显示出的尺寸相关性质的外推来预测。也有人争辩说,尽管一种材料可以在纳米尺度上包含临界边界,但这并不意味着它不可避免地会表现出赋予纳米材料的特性。这意味着“纳米材料”的属性只能与给定的感兴趣属性一起使用。就难以再现的实验而言,将进一步讨论材料设计的分辨率扩展所面临的主要挑战。据称,由于实验系统与其控制系统所属的环境之间不可避免的干扰,提高实验设置的精细度将导致在使它们可再现和可控制方面越来越困难。作为克服超精细规模合成方法中固有问题的方法之一,提到了自组装方法,其中一部分预编程的科学设计被物理系统自发地演化成吸引人的功能结构。物理系统部分地归因于其与环境的交互作用这一事实,这意味着每个自组装过程都可以视为共同组装事件。

著录项

  • 期刊名称 other
  • 作者

    Vuk Uskoković;

  • 作者单位
  • 年(卷),期 -1(5),3
  • 年度 -1
  • 页码 372–389
  • 总页数 44
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号