首页> 美国卫生研究院文献>Materials >Effect of Doping Temperatures and Nitrogen Precursors on the Physicochemical Optical and Electrical Conductivity Properties of Nitrogen-Doped Reduced Graphene Oxide
【2h】

Effect of Doping Temperatures and Nitrogen Precursors on the Physicochemical Optical and Electrical Conductivity Properties of Nitrogen-Doped Reduced Graphene Oxide

机译:掺杂温度和氮前驱物对氮掺杂还原氧化石墨烯的物理化学光学和电导性质的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The greatest challenge in graphene-based material synthesis is achieving large surface area of high conductivity. Thus, tuning physico-electrochemical properties of these materials is of paramount importance. An even greater problem is to obtain a desired dopant configuration which allows control over device sensitivity and enhanced reproducibility. In this work, substitutional doping of graphene oxide (GO) with nitrogen atoms to induce lattice–structural modification of GO resulted in nitrogen-doped reduced graphene oxide (N-rGO). The effect of doping temperatures and various nitrogen precursors on the physicochemical, optical, and conductivity properties of N-rGO is hereby reported. This was achieved by thermal treating GO with different nitrogen precursors at various doping temperatures. The lowest doping temperature (600 °C) resulted in less thermally stable N-rGO, yet with higher porosity, while the highest doping temperature (800 °C) produced the opposite results. The choice of nitrogen precursors had a significant impact on the atomic percentage of nitrogen in N-rGO. Nitrogen-rich precursor, 4-nitro- -phenylenediamine, provided N-rGO with favorable physicochemical properties (larger surface area of 154.02 m g ) with an enhanced electrical conductivity (0.133 S cm ) property, making it more useful in energy storage devices. Thus, by adjusting the doping temperatures and nitrogen precursors, one can tailor various properties of N-rGO.
机译:石墨烯基材料合成中的最大挑战是实现高导电率的大表面积。因此,调节这些材料的物理-电化学性质至关重要。更大的问题是获得所需的掺杂剂配置,该掺杂剂配置可以控制器件的灵敏度并提高再现性。在这项工作中,用氮原子对氧化石墨烯(GO)进行置换掺杂以诱导GO的晶格结构改性,从而导致了氮掺杂的还原氧化石墨烯(N-rGO)。据此报道了掺杂温度和各种氮前体对N-rGO的物理化学,光学和电导性质的影响。这是通过在不同的掺杂温度下用不同的氮前体对GO进行热处理来实现的。最低的掺杂温度(600°C)导致N-rGO的热稳定性较差,但孔隙率较高,而最高的掺杂温度(800°C)则产生相反的结果。氮前体的选择对N-rGO中氮的原子百分比有重大影响。富氮的前体4-硝基-苯二胺为N-rGO提供了良好的物理化学性质(更大的表面积154.02 m g)和增强的电导率(0.133 S cm)性质,使其在能量存储设备中更加有用。因此,通过调节掺杂温度和氮前驱物,可以调整N-rGO的各种性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号