首页> 美国卫生研究院文献>Polymers >Concurrent Modelling and Experimental Investigation of Material Properties and Geometries Produced by Projection Microstereolithography
【2h】

Concurrent Modelling and Experimental Investigation of Material Properties and Geometries Produced by Projection Microstereolithography

机译:投影微立体光刻技术产生的材料特性和几何形状的并行建模和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Projection microstereolithography additive manufacturing (PµSLA-AM) systems utilize free radical photopolymerization to selectively transform liquid resins into accurate and complex, shaped, solid parts upon UV light exposure. The material properties are coupled with geometrical accuracy, implying that optimizing one response will affect the other. Material properties can be enhanced by the post-curing process, while geometry is controlled during manufacturing. This paper uses designed experiments and analytical curing models concurrently to investigate the effects of process parameters on the green material properties (after manufacturing and before applying post curing), and the geometrical accuracy of the manufactured parts. It also presents a novel accumulated energy model that considers the light absorbance of the liquid resin and solid polymer. An essential definition, named the irradiance affected zone (IAZ), is introduced to estimate the accumulated energy for each layer and to assess the feasibility of the geometries. Innovative methodologies are used to minimize the effect of irradiance irregularities on the responses and to characterize the light absorbance of liquid and cured resin. Analogous to the working curve, an empirical model is proposed to define the critical energies required to start developing the different material properties. The results of this study can be used to develop an appropriate curing scheme, to approximate an initial solution and to define constraints for projection microstereolithography geometry optimization algorithms.
机译:投影微立体光刻增材制造(PµSLA-AM)系统利用自由基光聚合作用,在紫外光照射下将液态树脂选择性地转化为准确而复杂的成型固体零件。材料属性与几何精度结合在一起,这意味着优化一个响应会影响另一个响应。通过后固化过程可以增强材料性能,同时在制造过程中控制几何形状。本文同时使用设计的实验和分析固化模型来研究工艺参数对生料性能(在制造后和施加后固化之前)以及所制造零件的几何精度的影响。它还提出了一种新颖的累积能量模型,该模型考虑了液态树脂和固态聚合物的吸光度。引入了一个基本定义,称为辐照度影响区(IAZ),以估计每一层的累积能量并评估几何形状的可行性。使用创新的方法来最小化辐照度不规则对响应的影响,并表征液体和固化树脂的吸光度。类似于工作曲线,提出了一个经验模型来定义开始开发不同材料特性所需的临界能量。这项研究的结果可用于制定适当的固化方案,近似初始解决方案并为投影微立体光刻几何优化算法定义约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号