首页> 美国卫生研究院文献>Heliyon >CFD study and experimental validation of low liquid-loading flow assurance in oil and gas transport: studying the effect of fluid properties and operating conditions on flow variables
【2h】

CFD study and experimental validation of low liquid-loading flow assurance in oil and gas transport: studying the effect of fluid properties and operating conditions on flow variables

机译:油气运输低液体加载流量保证的CFD研究及实验验证:研究流体性能与运行条件对流量变量的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low liquid-loading flow frequently occurs during the transport of gas products in various industries, such as in the Oil & Gas, the Food, and the Pharmaceutical Industries. Even small amounts of liquid can have a significant effect on the flow conditions inside the pipeline, such as increased pressure loss, pipe wall stresses and corrosion, and liquid holdup along the pipeline. However, most studies that analyze this type of flow only use atmospheric pressures and horizontal 1-in or 2-in pipes, which do not accurately represent the range of operating conditions present in industrial applications. Therefore, this study focused on modeling low liquid-loading flow in medium-sized (6–10 in) pipes, using CFD simulations and experimental data from the University of Tulsa, and then applying it to real operating conditions from a Colombian gas pipeline. An acceptable difference was observed between experimental and CFD data, both for the liquid holdup (18%) and for the pressure drop (12%). Variables like pressure drop and wall shear stress increase with phase velocity, operating pressure, and pipe inclination. Liquid holdup increases with liquid velocity but decreases with all other factors. The relation of flow variables with phase velocities is of particular interest: Doubling the gas velocity decreased holdup 70% and increased pressure drop tenfold. On the other hand, the presence of the liquid phase seems to be more influential on process variables than its exact flowrate; the introduction of the liquid phase to a single-phase gas causes an increase in pressure loss by a factor of three, but doubling the liquid velocity only increases the pressure loss by a further 30%.
机译:在各个行业的天然气产品运输过程中经常发生低液体装载流程,例如石油和天然气,食品和制药行业。甚至少量液体可以对管道内部的流动条件具有显着影响,例如增加压力损失,管壁应力和腐蚀,以及沿管道的液体储存。然而,在分析这种类型的流动的大多数研究中仅使用大气压和水平的1英寸或2英寸管道,这不准确地代表工业应用中存在的操作条件范围。因此,本研究专注于使用塔尔萨大学的CFD仿真和实验数据在中等大小(6-10英寸)管中建模低液体加载流量,然后将其施加到哥伦比亚天然气管道的实际操作条件。在实验和CFD数据之间观察到可接受的差异,用于液体储存(18%)和压降(12%)。变量如压降和墙面剪切应力随相位速度,操作压力和管道倾斜度而增加。液体持有量随液体速度而增加,但随着所有其他因素减少。流量变量与相速度的关系特别感兴趣:加倍气体速度降低70%,增加压降十倍。另一方面,液相的存在似乎对过程变量比其精确流量更具影响力;将液相引入单相气体导致压力损失的增加三倍,但液体速度加倍仅将压力损失增加了30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号