首页> 美国卫生研究院文献>Polymers >Penetration of Hydrogen into Polymer Electrolyte Membrane for Fuel Cells by Quantum and Molecular Dynamics Simulations
【2h】

Penetration of Hydrogen into Polymer Electrolyte Membrane for Fuel Cells by Quantum and Molecular Dynamics Simulations

机译:用量子和分子动力学模拟将氢气渗透到聚合物电解质膜中燃料电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The advent of the Hydrogen Society created great interest around hydrogen-based energy a decade ago, with several types of vehicles based on hydrogen fuel cells already being produced in the automotive sector. For highly efficient fuel cell systems, the control of hydrogen inside a polymer-based electrolyte membrane is crucial. In this study, we investigated the molecular behavior of hydrogen inside a polymer-based proton-exchange membrane, using quantum and molecular dynamics simulations. In particular, this study focused on the structural difference of the pendent-like side chain polymer, resulting in the penetration ratio of hydrogen into the membrane deriving from the penetration depth of the membrane’s thickness while keeping the simulation time constant. The results reveal that the penetration ratio of the polymer with a shorter side chain was higher than that with the longer side chain. This was justified via two perspectives; electrostatic and van der Waals molecular interactions, and the structural difference of the polymers resulting in the free volume and different behavior of the side chain. In conclusion, we found that a longer side chain is more trembling and acts as an obstruction, dominating the penetration of hydrogen inside the polymer membrane.
机译:十年前,氢社会的出现对基于氢气的能量产生了极大的兴趣,基于已经在汽车领域生产的氢燃料电池的几种类型的车辆。对于高效的燃料电池系统,在聚合物基电解质膜内对氢的控制至关重要。在这项研究中,我们研究了使用量子和分子动力学模拟的基于聚合物的质子交换膜内氢的分子行为。特别地,该研究的重点是垂体状侧链聚合物的结构差异,导致氢气的渗透比在膜厚度的渗透深度源于膜的厚度的同时,同时保持模拟时间常数。结果表明,具有较短侧链的聚合物的渗透比高于较长侧链的渗透比。这是通过两个观点的证明;静电和范德瓦尔斯分子相互作用,以及聚合物的结构差异,导致侧链的自由体积和不同行为。总之,我们发现,较长的侧链更颤抖,充当障碍物,占据氢气在聚合物膜内的渗透。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号