首页> 美国卫生研究院文献>ACS Omega >Compact Steam-Methane Reforming for the Productionof Hydrogen in Continuous Flow Microreactor Systems
【2h】

Compact Steam-Methane Reforming for the Productionof Hydrogen in Continuous Flow Microreactor Systems

机译:紧凑型蒸汽甲烷重整生产连续流微反应器系统中氢的迁移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The implementation of fuel cell deployment requires efficient conversion of fuels into hydrogen in a distributed energy system. Fortunately, continuous flow and microreactor technology provide unique opportunities for the portable production of hydrogen. This study focuses on determining the operation space for a thermally integrated methane reforming system, thereby providing a theoretical basis for the design and optimization of such systems. The steam-methane reforming over rhodium coupled with methane combustion over platinum in a thermally integrated microchannel reactor arranged with rectangular-shaped protuberances was studied numerically in order to improve its operability and stability. Computational fluid dynamic simulations were carried out with detailed reaction mechanisms to identify conditions for the maximum hydrogen yield and the highest output power. Various operating lines were presented, and various performance metrics were evaluated accordingly. The results indicated that the efficient production of hydrogen is made possible through improving transport performance for highly active catalysts.The flow disturbance elements designed for the reactor are of greatbenefit to intensification of the reforming process. There existsa trade-off between fuel utilization and output power. Autothermaloperation advantages from improved transport performance in smallphysical dimensions were demonstrated for the system, but carefulthermal management is always necessary to ensure its efficient andstable operation. The thermal conductivity of the wall separatingthe exothermic and endothermic reactions plays a significant rolein determining the performance of the system. Highly active catalystsare required to intensify the overall reforming process and to achieveefficient thermal management. Adjustment of fluid velocities can serveas a convenient means to achieve efficient operation of the system.
机译:燃料电池部署的实施要求在分布式能源系统中将燃料有效地转化为氢。幸运的是,连续流和微反应器技术为便携式生产氢气提供了独特的机会。这项研究的重点是确定热集成甲烷重整系统的操作空间,从而为此类系统的设计和优化提供理论依据。为了提高其可操作性和稳定性,数值研究了铑的蒸汽-甲烷重整以及铂在具有矩形突起的热集成微通道反应器中的甲烷燃烧。用详细的反应机理进行了计算流体动力学模拟,以确定最大氢产量和最高输出功率的条件。介绍了各种操作线,并相应地评估了各种性能指标。结果表明,通过提高高活性催化剂的传输性能,可以有效地生产氢气。设计用于反应堆的扰动元件非常重要有利于改革进程的加强。那里存在在燃料利用率和输出功率之间进行权衡。自热较小的运输性能改善带来的运营优势演示了系统的物理尺寸,但要小心始终需要热管理以确保其高效和高效运行稳定。隔墙的导热系数放热和吸热反应起重要作用在确定系统性能方面。高活性催化剂需要加强整体改革进程并实现高效的热管理。调整流速可以起到作用作为实现系统高效运行的便捷手段。

著录项

  • 期刊名称 ACS Omega
  • 作者单位
  • 年(卷),期 2019(4),13
  • 年度 2019
  • 页码 15600–15614
  • 总页数 15
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号