首页> 美国卫生研究院文献>PLoS Clinical Trials >Fast, Automated Implementation of Temporally Precise Blind Deconvolution of Multiphasic Excitatory Postsynaptic Currents
【2h】

Fast, Automated Implementation of Temporally Precise Blind Deconvolution of Multiphasic Excitatory Postsynaptic Currents

机译:快速,自动化地实现多相兴奋突触后突触电流的临时精确盲反卷积

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Records of excitatory postsynaptic currents (EPSCs) are often complex, with overlapping signals that display a large range of amplitudes. Statistical analysis of the kinetics and amplitudes of such complex EPSCs is nonetheless essential to the understanding of transmitter release. We therefore developed a maximum-likelihood blind deconvolution algorithm to detect exocytotic events in complex EPSC records. The algorithm is capable of characterizing the kinetics of the prototypical EPSC as well as delineating individual release events at higher temporal resolution than other extant methods. The approach also accommodates data with low signal-to-noise ratios and those with substantial overlaps between events. We demonstrated the algorithm’s efficacy on paired whole-cell electrode recordings and synthetic data of high complexity. Using the algorithm to align EPSCs, we characterized their kinetics in a parameter-free way. Combining this approach with maximum-entropy deconvolution, we were able to identify independent release events in complex records at a temporal resolution of less than 250 µs. We determined that the increase in total postsynaptic current associated with depolarization of the presynaptic cell stems primarily from an increase in the rate of EPSCs rather than an increase in their amplitude. Finally, we found that fluctuations owing to postsynaptic receptor kinetics and experimental noise, as well as the model dependence of the deconvolution process, explain our inability to observe quantized peaks in histograms of EPSC amplitudes from physiological recordings.
机译:兴奋性突触后电流(EPSC)的记录通常很复杂,重叠的信号显示出很大的幅度范围。然而,对此类复杂EPSC的动力学和幅度进行统计分析对于理解发射器释放至关重要。因此,我们开发了一种最大似然盲解卷积算法,以检测复杂EPSC记录中的胞吐事件。该算法能够表征原型EPSC的动力学特性,并能以比其他现存方法更高的时间分辨率描绘单个释放事件。该方法还适应具有低信噪比的数据以及事件之间具有实质性重叠的数据。我们展示了该算法在配对全细胞电极记录和高复杂度合成数据中的功效。使用该算法来对齐EPSC,我们以无参数的方式表征了它们的动力学。将此方法与最大熵反卷积相结合,我们能够以小于250 µs的时间分辨率识别复杂记录中的独立释放事件。我们确定与突触前细胞去极化相关的总突触后电流的增加主要源于EPSC速率的增加而不是幅度的增加。最后,我们发现由于突触后受体动力学和实验噪声以及去卷积过程的模型依赖性而引起的波动,解释了我们无法从生理记录中观察到EPSC振幅直方图中的量化峰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号