首页> 美国卫生研究院文献>Springer Open Choice >Effective Optical Properties of Inhomogeneously Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sensors
【2h】

Effective Optical Properties of Inhomogeneously Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sensors

机译:纳米等离子体传感器在强场梯度中非均匀分布的纳米物体的有效光学特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate and efficient modeling of discontinuous, randomly distributed entities is a computationally challenging task, especially in the presence of large and inhomogeneous electric near-fields of plasmons. Simultaneously, the anisotropy of sensed entities and their overlap with inhomogeneous fields means that typical effective medium approaches may fail at describing their optical properties. Here, we extend the Maxwell Garnett mixing formula to overcome this limitation by introducing a gradient within the effective medium description of inhomogeneous nanoparticle layers. The effective medium layer is divided into slices with a varying volume fraction of the inclusions and, consequently, a spatially varying effective permittivity. This preserves the interplay between an anisotropic particle distribution and an inhomogeneous electric field and enables more accurate predictions than with a single effective layer. We demonstrate the usefulness of the gradient effective medium in FDTD modeling of indirect plasmonic sensing of nanoparticle sintering. First of all, it yields accurate results significantly faster than with explicitly modeled nanoparticles. Moreover, by employing the gradient effective medium approach, we prove that the detected signal is proportional to not only the nanoparticle size but also its size dispersion and potentially shape. This implies that the simple volume fraction parameter is insufficient to properly homogenize these types of nanoparticle layers and that in order to quantify optically the state of the layer more than one independent measurement should be carried out. These findings extend beyond nanoparticle sintering and could be useful in analysis of average signals in both plasmonic and dielectric systems to unveil dynamic changes in exosomes or polymer brushes, phase changes of nanoparticles, or quantifying light absorption in plasmon assisted catalysis.
机译:对不连续,随机分布的实体进行准确而有效的建模是一项计算难题,特别是在存在等离激元的大且不均匀电近场的情况下。同时,被感测实体的各向异性及其与不均匀场的重叠意味着典型的有效介质方法可能无法描述其光学特性。在这里,我们通过在不均匀纳米颗粒层的有效介质描述中引入梯度来扩展Maxwell Garnett混合公式,以克服此限制。有效介质层被分成具有不同体积分数的夹杂物的切片,因此,在空间上变化的有效介电常数。与单个有效层相比,这保留了各向异性粒子分布和非均匀电场之间的相互作用,并实现了更准确的预测。我们证明了梯度有效介质在纳米颗粒烧结的间接等离激元传感的FDTD建模中的有用性。首先,它产生的精确结果比显式建模的纳米粒子快得多。此外,通过采用梯度有效介质方法,我们证明了检测到的信号不仅与纳米颗粒的大小成正比,而且与它的大小分散度和潜在形状成正比。这暗示简单的体积分数参数不足以适当地均化这些类型的纳米颗粒层,并且为了光学地量化层的状态,应当进行一次以上的独立测量。这些发现超出了纳米粒子烧结的范围,可用于分析等离激元和介电系统中的平均信号,以揭示外泌体或聚合物刷中的动态变化,纳米粒子的相变或量化等离激元辅助催化中的光吸收。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号