首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient
【2h】

Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient

机译:局部适应性和海洋连通性模式解释了北海-波罗的海盐度梯度上的海洋硅藻的遗传分化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.
机译:海洋微生物对种群遗传结构的驱动因素仍然知之甚少。我们利用北海到波罗的海的过渡带来研究海洋硅藻Skeletonema marinoi的海景遗传学。在十个地点的354个个体中分析了八个多态微卫星位点,以沿着1500 km长的盐度梯度(从3到30 psu)分析该物种的种群结构。为了测试盐度适应性,确定了源自梯度的三种不同盐度制度的菌株的盐度反应标准。通过相关性分析将建模的海洋学连通性与定向相对迁移进行比较,以检查海洋学驱动因素。人口遗传分析显示,低盐度的波罗的海种群和高盐度的北海种群具有明显的遗传差异,这与该地区最明显的物理扩散障碍(丹麦海峡)相吻合。与北海种群相比,波罗的海种群显示出降低的遗传多样性。低盐度分离株的生长最优值明显低于天然盐度较高的菌株,表明局部盐度适应。尽管北海-波罗的海过渡被确定为基因流动的障碍,但波罗的海和北海种群之间却发生了迁移。但是,在过渡区的每一侧都存在差异化的中性标记,这表明移民不适应。结论是,在海洋连通性模式的支持下在波罗的海和北海之间形成非对称迁移模式的局部盐度适应决定了过渡带的遗传分化模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号