首页> 外文期刊>Advanced energy materials >Superior Sodium Storage in Na_2Ti_3O_7 Nanotube Arrays through Surface Engineering
【24h】

Superior Sodium Storage in Na_2Ti_3O_7 Nanotube Arrays through Surface Engineering

机译:通过表面工程,NA_2TI_3O_7 NA_2TI_3O_7纳米管阵列的优质钠储存

获取原文
获取原文并翻译 | 示例
           

摘要

Sodium-ion batteries have attracted extraordinary attention owing to their low cost and raw materials in abundance. A major challenge of practical implementation is the lack of accessible and affordable anodes that can reversibly store a substantial amount of Na ions in a fast and stable manner. It is reported that surface engineered sodium titanate (Na2Ti3O7) nanotube arrays directly grown on Ti substrates can serve as efficient anodes to meet those stringent requirements. The fabrication of the nanotube arrays involves hydrothermal growing of Na2Ti3O7 nanotubes, surface deposition of a thin layer of TiO2, and subsequent sulfidation. The resulting nanoarrays exhibit a high electrochemical Na-storage activity that outperforms other Na2Ti3O7 based materials. They deliver high reversible capacities of 221 mAh g(-1) and exhibit a superior cycling efficiency and rate capability, retaining 78 mAh g(-1) at 10 C (1770 mA g(-1)) over 10 000 continuous cycles. In addition, the full cell consisting of Na2Ti3O7 nanotube anode and Na-2/3(Ni1/3Mn2/3)O-2 cathode is capable of delivering a specific energy of approximate to 110 Wh kg(-1) (based on the mass of both electrodes). The surface engineering can provide useful tools in the development of high performance anode materials with robust power and cyclability.
机译:由于其丰富的成本和原材料,钠离子电池引起了非常关注。实际实施的一项重大挑战是缺乏可获得的可访问和实惠的阳极,可以以快速且稳定的方式可逆地存储大量的NA离子。据报道,表面工程化钛酸钠(Na2Ti3O7)直接生长在Ti底物上的纳米管阵列可以用作有效的阳极以满足这些严格要求。纳米管阵列的制造涉及Na 2 Ti3O7纳米管的水热生长,TiO 2的薄层的表面沉积和随后的硫化。所得纳米载体具有高电化学Na储存活性,其优于其他基于Na2Ti3O7的材料。它们提供221mAhg(-1)的高可逆容量,并且表现出优异的循环效率和速率能力,在10℃(1770mA g(-1))以上超过10 000个连续循环。此外,由Na2Ti3O7纳米管阳极和Na-2/3(Ni1 / 3Mn2 / 3)O-2阴极组成的全部细胞能够提供约110WH kg(-1)的特定能量(基于质量两个电极)。表面工程可以提供具有强大动力和可循环性的高性能阳极材料的有用工具。

著录项

  • 来源
    《Advanced energy materials》 |2016年第11期|1502568.1-1502568.8|共8页
  • 作者单位

    Soochow Univ CECMP Coll Phys Optoelect & Energy Suzhou 215006 Peoples R China;

    Soochow Univ CECMP Coll Phys Optoelect & Energy Suzhou 215006 Peoples R China;

    Max Planck Inst Solid State Res Heisenbergstr 1 D-70569 Stuttgart Germany;

    Soochow Univ CECMP Coll Phys Optoelect & Energy Suzhou 215006 Peoples R China;

    Max Planck Inst Solid State Res Heisenbergstr 1 D-70569 Stuttgart Germany;

    Univ Sci & Technol China Dept Mat Sci & Engn Chinese Acad Sci Key Lab Mat Energy Convers Hefei 230026 Peoples R China|Univ Sci & Technol China SKLFS Hefei 230026 Anhui Peoples R China|Max Planck Inst Solid State Res Heisenbergstr 1 D-70569 Stuttgart Germany;

    Soochow Univ CECMP Coll Phys Optoelect & Energy Suzhou 215006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号