首页> 外文期刊>Advanced energy materials >Multiscale Understanding and Architecture Design of High Energy/Power Lithium-Ion Battery Electrodes
【24h】

Multiscale Understanding and Architecture Design of High Energy/Power Lithium-Ion Battery Electrodes

机译:高能/功率锂离子电池电极的多尺度理解与架构设计

获取原文
获取原文并翻译 | 示例
           

摘要

Among various commercially available energy storage devices, lithium-ion batteries (LIBs) stand out as the most compact and rapidly growing technology. This multicomponent system operates on coupled dynamics to reversibly store and release electricity. With the hierarchical electrode architectures inside LIBs, versatile functionality can be realized by design, while considerable difficulties remain to be solved to fully exploit the capability of each constituent. With the rapid electrification of the transportation sector and an urgent need to overhaul electric grids in the context of renewable energy penetration, demands for concomitant high energy and high power batteries are continuously increasing. Although building an ideal battery requires effort from multiple scientific and engineering aspects, it is imperative to gain insight into multiscale transport behaviors arising in both spatial and temporal dimensions, and enable their harmonic integration inside the whole battery system. In this progress report, recent research efforts on characterizing and understanding transport kinetics in LIBs are reviewed covering a broad range of electrode materials and length scales. To demonstrate the crucial role of such information in revolutionary electrode design, examples of innovative high energy/power electrodes are provided with their unique hierarchical porous architectures highlighted. To conclude, perspectives on further approaches toward advanced thick electrode designs with fast kinetics and tailored properties are discussed.
机译:在各种市售的能量存储装置中,锂离子电池(LIBS)脱颖而出是最紧凑且迅速增长的技术。该多组分系统采用耦合动力学,可逆地存储和释放电力。利用LIB中的分层电极架构,可以通过设计实现多功能功能,而仍有相当大的困难仍有待解决以充分利用每个组成部分的能力。随着运输部门的快速充电,迫切需要在可再生能源渗透的背景下大修电网,对伴随的高能量和高功率电池的需求不断增加。尽管构建理想的电池需要从多个科学和工程方面的努力,但必须进入空间和时间尺寸中产生的多尺度运输行为,并且能够在整个电池系统内实现它们的谐波集成。在此进度报告中,综述了LIBS中表征和理解运输动力学的最近研究努力,涵盖了广泛的电极材料和长度尺度。为了证明这种信息在革命电极设计中的关键作用,创新的高能量/电力电极的示例具有它们独特的分层多孔架构突出显示的。为了得出结论,讨论了对具有快速动力学和量身定制的高级厚电极设计的进一步方法的观点。

著录项

  • 来源
    《Advanced energy materials》 |2021年第2期|2000808.1-2000808.20|共20页
  • 作者单位

    Univ Texas Austin Texas Mat Inst Mat Sci & Engn Program Austin TX 78712 USA;

    Univ Texas Austin Texas Mat Inst Mat Sci & Engn Program Austin TX 78712 USA;

    Univ Texas Austin Texas Mat Inst Mat Sci & Engn Program Austin TX 78712 USA;

    SUNY Stony Brook Dept Mat Sci & Chem Engn Dept Chem Stony Brook NY 11794 USA;

    SUNY Stony Brook Dept Mat Sci & Chem Engn Dept Chem Stony Brook NY 11794 USA|Brookhaven Natl Lab Energy & Photon Sci Directorate Upton NY 11973 USA;

    SUNY Stony Brook Dept Mat Sci & Chem Engn Dept Chem Stony Brook NY 11794 USA|Brookhaven Natl Lab Energy & Photon Sci Directorate Upton NY 11973 USA;

    Univ Texas Austin Texas Mat Inst Mat Sci & Engn Program Austin TX 78712 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    architecture designs; high power; energy; lithium-ion batteries; multiscale; transport kinetics;

    机译:建筑设计;高功率;能量;锂离子电池;多尺度;运输动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号