首页> 外文期刊>Advanced energy materials >Designing Rules and Optimization of Triboelectric Nanogenerator Arrays
【24h】

Designing Rules and Optimization of Triboelectric Nanogenerator Arrays

机译:摩擦电纳米仪阵列的设计规则与优化

获取原文
获取原文并翻译 | 示例
           

摘要

A triboelectric nanogenerator (TENG) is an effective means for the conversion of mechanical energy into electricity. Although Maxwell's displacement current is the underline mechanism of TENGs, the spatial and temporal variations of the electric field and electric displacement remain elusive, which prohibits an effective optimization of the energy conversion process. Here, the electric field distribution and energy dynamics of TENGs is determined using 3D mathematical modeling. The electrical energies stored in TENGs and extracted into the external circuit are calculated quantitatively whereby the ratio of the two, defined as the output efficiency, is obtained. Then, the power density and energy density of TENGs are defined. Utilizing the principle of virtual work, the minimum required external force-time relationship is evaluated. The influence of device parameters, geometry, and optimum conditions are discussed systematically so as to determine general optimization guidelines for TENGs. In addition, although the fringing electric field is practically inevitable, adjustments of the gap distance between neighboring TENG devices to assure that an optimized fringing electric field is "leaked", is demonstrated to lead to improvement in a TENG array. Then, for the first time, this work presents universal design rules and holistic optimization strategies for the network structure of TENGs.
机译:摩擦电纳米料(滕)是将机械能转化为电力的有效手段。尽管Maxwell的位移电流是Tengs的下划线机制,但电场和电位移的空间和时间变化仍然是难以捉摸的,这禁止有效优化能量转换过程。这里,使用3D数学建模确定腾冲的电场分布和能量动力学。存储在Tengs中并提取到外部电路中的电能量定量地计算,从而获得定义为输出效率的两个比率。然后,定义了Tengs的功率密度和能量密度。利用虚拟工作原理,评估所需的最低外力时间关系。系统参数,几何和最佳条件的影响是系统地讨论的,以确定Tengs的一般优化指南。另外,尽管流苏电场实际上是不可避免的,但是邻近腾腾器件之间的间隙距离的调节,以确保优化的交流电场“泄漏”,以导致腾腾阵列的改进。然后,这项工作首次提出了繁荣网络结构的普遍设计规则和整体优化策略。

著录项

  • 来源
    《Advanced energy materials》 |2021年第16期|2100065.1-2100065.17|共17页
  • 作者单位

    Chinese Acad Sci Beijing Inst Nanoenergy & Nanosyst Beijing Key Lab Micronano Energy & Sensor CAS Ctr Excellence Nanosci Beijing 100083 Peoples R China|Univ Chinese Acad Sci Sch Nanosci & Technol Beijing 100049 Peoples R China;

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA;

    Chinese Acad Sci Beijing Inst Nanoenergy & Nanosyst Beijing Key Lab Micronano Energy & Sensor CAS Ctr Excellence Nanosci Beijing 100083 Peoples R China|Univ Chinese Acad Sci Sch Nanosci & Technol Beijing 100049 Peoples R China;

    Chinese Acad Sci Beijing Inst Nanoenergy & Nanosyst Beijing Key Lab Micronano Energy & Sensor CAS Ctr Excellence Nanosci Beijing 100083 Peoples R China|Univ Chinese Acad Sci Sch Nanosci & Technol Beijing 100049 Peoples R China;

    Chinese Acad Sci Beijing Inst Nanoenergy & Nanosyst Beijing Key Lab Micronano Energy & Sensor CAS Ctr Excellence Nanosci Beijing 100083 Peoples R China|Univ Chinese Acad Sci Sch Nanosci & Technol Beijing 100049 Peoples R China;

    Chinese Acad Sci Beijing Inst Nanoenergy & Nanosyst Beijing Key Lab Micronano Energy & Sensor CAS Ctr Excellence Nanosci Beijing 100083 Peoples R China|Univ Chinese Acad Sci Sch Nanosci & Technol Beijing 100049 Peoples R China|Georgia Inst Technol Sch Mat Sci & Engn Atlanta GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    displacement current; energy density; output efficiency; power density; TENG arrays; triboelectric nanogenerators;

    机译:位移电流;能量密度;输出效率;功率密度;腾阵;摩擦纳米料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号