首页> 外文期刊>Advanced energy materials >Trapping and Redistribution of Hydrophobic Sulfur Sols in Graphene–Polyethyleneimine Networks for Stable Li–S Cathodes
【24h】

Trapping and Redistribution of Hydrophobic Sulfur Sols in Graphene–Polyethyleneimine Networks for Stable Li–S Cathodes

机译:稳定的Li-S阴极在石墨烯-聚乙烯亚胺网络中疏水硫溶胶的捕集和再分布

获取原文
获取原文并翻译 | 示例
           

摘要

The lithium-sulfur battery is a promising next-generation rechargeable battery system which promises to be less expensive and potentially fivefold more energy dense than current Li-ion technologies. This can only be achieved by improving the sulfur utilization in thick, high areal loading cathodes while minimizing capacity fading to realize high practical energy densities and long cycle-life. This study reports a simple method to fabricate a high capacity, high loading cathode with one of the highest cycle-stabilities reported. It is demonstrated that sulfur sols formed by crashing dissolved elemental sulfur into water are trapped between graphene oxide sheets when flocculated with polyethyleneimine. Low temperature, hydrothermal treatment produces a conductive, partially covalent composite exhibiting outstanding cycle-stability. Using this method, sulfur can be uniformly distributed at fractions as high as 75.7 wt%. Electrodes with high areal sulfur loadings (up to approximate to 5.4 mg cm(-2)), prepared using these composites, lead to projected high cell level practical energy densities of 400 Wh kg(-1). The electrodes demonstrate negligible capacity loss over 250 cycles at 0.15 C and only 0.028% capacity loss per cycle over 810 cycles at 0.75 C. Eventual capacity fading is found to be linked to degradation of lithium-metal anode suggesting that the cathode material remains stable over even more extended cycling.
机译:锂硫电池是有前途的下一代可再充电电池系统,与目前的锂离子技术相比,它有望更便宜,能量密度可能提高五倍。这只能通过改善厚的高面积负载阴极中的硫利用率,同时使容量衰减最小化以实现高实用能量密度和长循环寿命来实现。这项研究报告了一种简单的方法来制造高容量,高负载的阴极,具有报道的最高循环稳定性之一。结果表明,当与聚乙烯亚胺絮凝时,将溶解的元素硫分解成水而形成的硫溶胶会被夹在氧化石墨烯片之间。低温水热处理可产生导电的,部分共价的复合材料,表现出出色的循环稳定性。使用这种方法,硫可以以高达75.7 wt%的比例均匀分布。使用这些复合材料制备的具有高面硫负荷(高达约5.4 mg cm(-2))的电极,导致预计的高电池水平实际能量密度为400 Wh kg(-1)。电极在0.15 C的250个循环中表现出可忽略不计的容量损失,而在0.75 C的810循环中显示出每循环仅0.028%的容量损失。最终发现容量衰减与锂金属阳极的降解有关,这表明正极材料在超过200的温度下仍保持稳定甚至延长骑行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号