首页> 外文期刊>Advanced Functional Materials >The Interaction between Quantum Dots and Graphene: The Applications in Graphene-Based Solar Cells and Photodetectors
【24h】

The Interaction between Quantum Dots and Graphene: The Applications in Graphene-Based Solar Cells and Photodetectors

机译:量子点和石墨烯之间的相互作用:在基于石墨烯的太阳能电池和光电探测器中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene with a series of neoteric electronic and optical properties is an intriguing building block for optoelectronic devices. Over the past decade, graphene-based solar cells (SCs) and photodetectors (PDs) which can convert light signals to electrical signals have received burgeoning exploration. However, limited light absorption hampers the performance of these devices. Quantum dots (QDs) possess a strong confinement effect, a large exciton energy, and long exciton lifetime, enhancing the interaction between incident light and graphene. Especially, as the density of states near the Dirac point of graphene is ultralow, it is easy to modify the Fermi level of graphene by inserting quantum dots at the interface between graphene and light, thereby enhancing the performance of graphene-based optoelectronic devices. The characteristics of QDs and crucial physical mechanisms of the interaction and energy transfer in QDs/graphene nanohybrids are systematically addressed. The factors influencing the efficiency of energy transfer are also analyzed quantitatively. Moreover, the experimental process of QD-enhanced technologies for SCs, photoconductors, phototransistors, and photodiode PDs is reviewed. Eventually, a conclusion is given and the remaining challenges and future development for QDs/2D materials hybrid systems is discussed. Possible steps toward large-scale commercial applications and integration into optoelectronic networks are suggested.
机译:具有一系列现代电子和光学特性的石墨烯是光电子器件的一个有趣的构建基块。在过去的十年中,可以将光信号转换为电信号的基于石墨烯的太阳能电池(SC)和光电探测器(PD)受到了迅速发展的探索。但是,有限的光吸收会影响这些设备的性能。量子点(QD)具有很强的限制作用,大的激子能量和长的激子寿命,从而增强了入射光与石墨烯之间的相互作用。特别地,由于在石墨烯的狄拉克点附近的状态密度极低,因此容易通过在石墨烯和光之间的界面插入量子点来改变石墨烯的费米能级,从而提高基于石墨烯的光电器件的性能。系统地解决了量子点的特性以及量子点/石墨烯纳米杂化物中相互作用和能量转移的关键物理机制。还定量分析了影响能量传递效率的因素。此外,对用于SC,光电导体,光电晶体管和光电二极管PD的QD增强技术的实验过程进行了回顾。最后,给出了结论,并讨论了QDs / 2D材料混合系统的剩余挑战和未来发展。建议向大规模商业应用和集成到光电网络的可能步骤。

著录项

  • 来源
    《Advanced Functional Materials》 |2018年第50期|1804712.1-1804712.19|共19页
  • 作者单位

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China|Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Coll Microelect, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2D materials; energy transfer; photodetector; quantum dots; solar cells;

    机译:二维材料;能量转移;光电探测器;量子点;太阳能电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号