首页> 外文期刊>Advanced Functional Materials >Tunable Graphene Electronics with Local Ultrahigh Pressure
【24h】

Tunable Graphene Electronics with Local Ultrahigh Pressure

机译:具有局部超高压的可调节石墨烯电子产品

获取原文
获取原文并翻译 | 示例
           

摘要

Fine-tuning of graphene effective doping is achieved by applying ultrahigh pressures (10 GPa) using atomic force microscopy (AFM) diamond tips. Specific areas in graphene flakes are irreversibly flattened against a SiO2 substrate. This work represents the first demonstration of local creation of very stable effective p-doped graphene regions with nanometer precision, as unambiguously verified by a battery of techniques. Importantly, the doping strength depends monotonically on the applied pressure, allowing a controlled tuning of graphene electronics. Through this doping effect, ultrahigh pressure modifications include the possibility of selectively modifying graphene areas to improve their electrical contact with metal electrodes, as shown by conductive AFM. Density functional theory calculations and experimental data suggest that this pressure level induces the onset of covalent bonding between graphene and the underlying SiO2 substrate. This work opens a convenient avenue to tuning the electronics of 2D materials and van der Waals heterostructures through pressure with nanometer resolution.
机译:通过使用原子力显微镜(AFM)金刚石尖端施加超高压(> 10 GPa),可以实现石墨烯有效掺杂的微调。石墨烯薄片中的特定区域不可逆地压平在SiO2基材上。这项工作代表了以纳米精度局部稳定地创建非常稳定的有效p掺杂石墨烯区域的首次演示,这一点已通过一系列技术的明确验证。重要的是,掺杂强度单调取决于所施加的压力,从而可以控制石墨烯电子器件的调谐。通过这种掺杂效应,超高压改性包括可能选择性地改性石墨烯区域以改善其与金属电极的电接触,如导电AFM所示。密度泛函理论计算和实验数据表明,该压力水平导致石墨烯与下面的SiO2基底之间共价键的出现。这项工作为通过纳米分辨率的压力调整2D材料和范德华异质结构的电子学开辟了便利的途径。

著录项

  • 来源
    《Advanced Functional Materials》 |2019年第8期|1806715.1-1806715.11|共11页
  • 作者单位

    Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain|Inst Madrileno Estudios Avanzados Nanociencia IMD, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain|Univ Autonoma Madrid, Inst Adv Res Chem Sci IAdChem, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain|Inst Madrileno Estudios Avanzados Nanociencia IMD, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain;

    Inst Madrileno Estudios Avanzados Nanociencia IMD, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain|Univ Autonoma Madrid, Dept Quim Inorgan, E-28049 Madrid, Spain|Univ Autonoma Madrid, Inst Adv Res Chem Sci IAdChem, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain;

    Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain|Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atomic force microscopy; chemical bonding; doping; graphene; ultrahigh pressure;

    机译:原子力显微镜;化学键合;掺杂;石墨烯;超高压;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号