首页> 外文期刊>Advanced Functional Materials >Self-Assembly of Nanoparticle-Spiked Pillar Arrays for Plasmonic Biosensing
【24h】

Self-Assembly of Nanoparticle-Spiked Pillar Arrays for Plasmonic Biosensing

机译:自组装的等离子等离子体传感的纳米粒子柱阵列。

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmonic biosensors have demonstrated superior performance in detecting various biomolecules with high sensitivity through simple assays. Scaled-up, reproducible chip production with a high density of hotspots in a large area has been technically challenging, limiting the commercialization and clinical translation of these biosensors. A new fabrication method for 3D plasmonic nanostructures with a high density, large volume of hotspots and therefore inherently improved detection capabilities is developed. Specifically, Au nanoparticle-spiked Au nanopillar arrays are prepared by utilizing enhanced surface diffusion of adsorbed Au atoms on a slippery Au nanopillar arrays through a simple vacuum process. This process enables the direct formation of a high density of spherical Au nanoparticles on the 1 nm-thick dielectric coated Au nanopillar arrays without high-temperature annealing, which results in multiple plasmonic coupling, and thereby large effective volume of hotspots in 3D spaces. The plasmonic nanostructures show signal enhancements over 8.3 x 10(8)-fold for surface-enhanced Raman spectroscopy and over 2.7 x 10(2)-fold for plasmon-enhanced fluorescence. The 3D plasmonic chip is used to detect avian influenza-associated antibodies at 100 times higher sensitivity compared with unstructured Au substrates for plasmon-enhanced fluorescence detection. Such a simple and scalable fabrication of highly sensitive 3D plasmonic nanostructures provides new opportunities to broaden plasmon-enhanced sensing applications.
机译:等离子体生物传感器在通过简单的测定方法以高灵敏度检测各种生物分子方面表现出卓越的性能。在大面积上具有高热点密度的规模化,可重复生产的芯片在技术上具有挑战性,限制了这些生物传感器的商业化和临床翻译。开发了一种新的3D等离子体纳米结构的制造方法,该结构具有较高的密度,大量的热点,因此固有地提高了检测能力。具体地,通过简单的真空工艺,通过利用在光滑的金纳米柱阵列上的吸附的金原子的增强的表面扩散,来制备金纳米粒子掺入的金纳米柱阵列。此过程无需高温退火即可在厚度为1 nm的介电涂层Au纳米柱阵列上直接形成高密度的球形Au纳米颗粒,而无需进行高温退火,这会导致多个等离子体耦合,从而在3D空间中产生大量有效的热点。等离子体纳米结构对表面增强拉曼光谱显示信号增强超过8.3 x 10(8)倍,对等离子体增强荧光显示信号增强超过2.7 x 10(2)倍。 3D等离子体芯片用于检测与禽流感相关的抗体,其灵敏度是非结构化Au基质的等离子增强荧光检测的100倍。高灵敏度3D等离子体纳米结构的这种简单且可扩展的制造方式为扩展等离子体增强的传感应用提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号