首页> 外文期刊>Advanced Functional Materials >Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS
【24h】

Nanogap Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS

机译:由可切换的毛细管力驱动的自组装制造的Nanogap等离子结构,用于微流控SERS的抗癌药物的局部传感。

获取原文
获取原文并翻译 | 示例
           

摘要

Nanogap plasmonic structures, which can strongly enhance electromagnetic fields, enable widespread applications in surface-enhanced Raman spectroscopy (SERS) sensing. Although the directed self-assembly strategy has been adopted for the fabrication of microanostructures on open surfaces, fabrication of nanogap plasmonic structures on complex substrates or at designated locations still remains a grand challenge. Here, a switchable self-assembly method is developed to manufacture 3D nanogap plasmonic structures by combining supercritical drying and capillary-force driven self-assembly (CFSA) of micropillars fabricated by laser printing. The polymer pillars can stay upright during solvent development via supercritical drying, and then can form the nanogap after metal coating and subsequent CFSA. Due to the excellent flexibility of this method, diverse patterned plasmonic nanogap structures can be fabricated on planar or nonplanar substrates for SERS. The measured SERS signals of different patterned nanogaps in fluidic environment show a maximum enhancement factor approximate to 8 x 10(7). Such nanostructures in microchannels also allow localized sensing for anticancer drugs (doxorubicin). Resulting from the marriage of top-down and self-assembly techniques, this method provides a facile, effective, and controllable approach for creating nanogap enabled SERS devices in fluidic channels, and hence can advance applications in precision medicine.
机译:可以大大增强电磁场的纳米间隙等离子体结构可以在表面增强拉曼光谱(SERS)传感中广泛应用。尽管已经采用定向自组装策略在开放表面上制造微/纳米结构,但是在复杂衬底或指定位置上制造纳米间隙等离子体结构仍然是一个巨大的挑战。在这里,通过组合超临界干燥和通过激光打印制造的微柱的毛细管力驱动的自组装(CFSA),开发了一种可切换的自组装方法来制造3D纳米间隙等离子体结构。聚合物柱可以在溶剂开发过程中通过超临界干燥保持直立,然后可以在金属涂层和随后的CFSA之后形成纳米间隙。由于该方法的出色灵活性,可以在用于SERS的平面或非平面基板上制造各种图案化的等离激元纳米间隙结构。在流体环境中,不同图案化纳米间隙的SERS信号测得的最大增强因子约为8 x 10(7)。微通道中的此类纳米结构还允许局部检测抗癌药物(阿霉素)。由于自上而下和自组装技术的结合,该方法提供了一种简便,有效且可控制的方法,用于在流体通道中创建具有纳米缺口的SERS设备,因此可以促进在精密医学中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号