首页> 外文期刊>Advanced Functional Materials >Controlling Spatiotemporal Mechanics of Supramolecular Hydrogel Networks with Highly Branched Cucurbit[8]uril Polyrotaxanes
【24h】

Controlling Spatiotemporal Mechanics of Supramolecular Hydrogel Networks with Highly Branched Cucurbit[8]uril Polyrotaxanes

机译:控制具有高支链葫芦[8] uril聚轮烷的超分子水凝胶网络的时空力学

获取原文
获取原文并翻译 | 示例
           

摘要

Attempts to rationally tune the macroscopic mechanical performance of supramolecular hydrogel networks through noncovalent molecular interactions have led to a wide variety of supramolecular materials with desirable functions. While the viscoelastic properties are dominated by temporal hierarchy (crosslinking kinetics), direct mechanistic studies on spatiotemporal control of supramolecular hydrogel networks, based on host-guest chemistry, have not yet been established. Here, supramolecular hydrogel networks assembled from highly branched cucurbit[8]uril-threaded polyrotaxanes (HBP-CB[8]) and naphthyl-functionalized hydroxyethyl cellulose (HECNp) are reported, exploiting the CB[8] host-guest complexation. Mechanically locking CB[8] host molecules onto a highly branched hydrophilic polymer backbone, through selective binary complexation with viologen derivatives, dramatically increases the solubility of CB[8]. Additionally, the branched architecture enables tuning of material dynamics of the supramolecular hydrogel networks via both topological (spatial hierarchy) and kinetic (temporal hierarchy) control. Relationship between macroscopic properties (time- and temperature-dependent rheological properties, thermal stability, and reversibility), spatiotemporal hierarchy, and chain dynamics of the highly branched polyrotaxane hydrogel networks is investigated in detail. Such kind of tuning of material mechanics through spatiotemporal hierarchy improves our understanding of the challenging relationship between design of supramolecular polymeric materials and their complex viscoelasticity, and also highlights a facile strategy to engineer dynamic supramolecular materials.
机译:试图通过非共价分子相互作用合理地调节超分子水凝胶网络的宏观机械性能,已导致产生了具有所需功能的多种超分子材料。虽然粘弹性由时间层级(交联动力学)支配,但尚未建立基于宿主-客体化学的超分子水凝胶网络时空控制的直接机理研究。在这里,报道了利用CB [8]宿主-客体络合作用,由高度分支的葫芦丝[8]尿素螺纹聚轮烷(HBP-CB [8])和萘基官能化的羟乙基纤维素(HECNp)组装而成的超分子水凝胶网络。通过与紫精衍生物的选择性二元络合,将CB [8]宿主分子机械锁定在高度分支的亲水性聚合物主链上,从而大大提高了CB [8]的溶解度。另外,分支结构能够通过拓扑(空间层次)和动力学(时间层次)控制来调节超分子水凝胶网络的材料动力学。详细研究了高支化聚轮烷水凝胶网络的宏观性质(随时间和温度变化的流变性质,热稳定性和可逆性),时空层次和链动力学之间的关系。这种通过时空层次进行材料力学调整的方法,使我们对超分子聚合物材料的设计与其复杂的粘弹性之间的挑战性关系有了更深入的了解,并且突出了一种工程化动态超分子材料的简便策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号