首页> 外文期刊>Advanced Functional Materials >Distinct Optoelectronic Signatures for Charge Transfer and Energy Transfer in Quantum Dot-MoS_2 Hybrid Photodetectors Revealed by Photocurrent Imaging Microscopy
【24h】

Distinct Optoelectronic Signatures for Charge Transfer and Energy Transfer in Quantum Dot-MoS_2 Hybrid Photodetectors Revealed by Photocurrent Imaging Microscopy

机译:光电流成像显微镜揭示的量子点-MoS_2混合光电探测器中电荷转移和能量转移的不同光电签名。

获取原文
获取原文并翻译 | 示例
           

摘要

Atomically thin transition metal dichalcogenides (TMDCs) have intriguing nanoscale properties like high charge mobility, photosensitivity, layer-thickness-dependent bandgap, and mechanical flexibility, which are all appealing for the development of next generation optoelectronic, catalytic, and sensory devices. Their atomically thin thickness, however, renders TMDCs poor absorptivity. Here, bilayer MoS2 is combined with core-only CdSe QDs and core/shell CdSe/ZnS QDs to obtain hybrids with increased light harvesting and exhibiting interfacial charge transfer (CT) and nonradiative energy transfer (NET), respectively. Field-effect transistors based on these hybrids and their responses to varying laser power and applied gate voltage are investigated with scanning photocurrent microscopy (SPCM) in view of their potential utilization in light harvesting and photodetector applications. CdSe-MoS2 hybrids are found to exhibit encouraging properties for photodetectors, like high responsivity and fast on/off response under low light exposure while CdSe/ZnS-MoS2 hybrids show enhanced charge carrier generation with increased light exposure, thus suitable for photovoltaics. While distinguishing optically between CT and NET in QD-TMDCs is nontrivial, it is found that they can be differentiated by SPCM as these two processes exhibit distinctive light-intensity dependencies: CT causes a photogating effect, decreasing the photocurrent response with increasing light power while NET increases the photocurrent response with increasing light power, opposite to CT case.
机译:原子稀薄的过渡金属二硫化碳(TMDC)具有引人入胜的纳米级性能,例如高电荷迁移率,光敏性,层厚度依赖性带隙和机械柔韧性,这些都吸引了下一代光电,催化和传感设备的发展。但是,它们的原子厚度很薄,使得TMDC的吸收率很差。在这里,双层MoS2与仅含核的CdSe量子点和核/壳CdSe / ZnS量子点结合在一起,可获得具有更高的光收集率并表现出界面电荷转移(CT)和非辐射能量转移(NET)的杂化体。考虑到它们在光收集和光电探测器应用中的潜在利用,利用扫描光电流显微镜(SPCM)研究了基于这些混合体的场效应晶体管及其对变化的激光功率和施加的栅极电压的响应。发现CdSe-MoS2杂化物对光电探测器表现出令人鼓舞的特性,例如在低光照下具有高响应性和快速的开/关响应,而CdSe / ZnS-MoS2杂化物显示出随着电荷增加而增强的载流子产生,因此适用于光伏。虽然在光学上区分QD-TMDC中的CT和NET并非易事,但发现它们可以通过SPCM进行区分,因为这两个过程表现出独特的光强度依赖性:CT引起光闸效应,随着光功率的增加而降低光电流响应,而与CT情况相反,NET随着光功率的增加而增加了光电流响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号