首页> 外文期刊>Advanced Functional Materials >High-Performance Wearable Micro-Supercapacitors Based on Microfluidic-Directed Nitrogen-Doped Graphene Fiber Electrodes
【24h】

High-Performance Wearable Micro-Supercapacitors Based on Microfluidic-Directed Nitrogen-Doped Graphene Fiber Electrodes

机译:基于微流控氮掺杂石墨烯纤维电极的高性能可穿戴微型超级电容器

获取原文
获取原文并翻译 | 示例
       

摘要

Fiber-shaped micro-supercapacitors (micro-SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic-directed strategy to synthesize homogeneous nitrogen-doped porous graphene fibers. The porous fibers-based micro-SCs utilize solid-state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1-ethyl-3-methylimidazolium tetrafluoroborate/ poly(vinylidenefluoride-co-hexafluoropropylene) (EMIBF4/PVDF-HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm(-2)), high cycling-stability, and long-term bending-durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7-46.9 mu Wh cm(-2) at power densities of 1.5-15 W cm(-2) are obtained in EMIBF4/PVDF-HFP. The key to higher performances stems from microfluidic-controlled fibers with a uniformly porous network, large specific surface area (388.6 m(2) g(-1)), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m(-1)) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro-SCs into flexible and fabric substrates to power audio-visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.
机译:纤维状的微型超级电容器(micro-SCs)由于具有很高的柔韧性和可编织性而引起了人们对可穿戴电子产品的极大兴趣。但是,由于不均匀和孔少,它们通常呈现出低能量密度。在这里,我们展示了一种微流控策略来合成均匀的氮掺杂多孔石墨烯纤维。基于多孔纤维的微型SC使用固态磷酸/聚乙烯醇(H3PO4 / PVA)和1-乙基-3-甲基咪唑四氟硼酸酯/聚偏二氟乙烯-共六氟丙烯(EMIBF4 / PVDF-HFP)电解质显示出电化学性能的显着改善。基于H3PO4 / PVA,可实现超大电容(1132 mF cm(-2)),高循环稳定性和长期弯曲耐久性。此外,在EMIBF4 / PVDF-HFP中,在功率密度为1.5-15 W cm(-2)时,高能量密度为95.7-46.9 mu Wh cm(-2)。更高性能的关键源于具有均匀多孔网络,大比表面积(388.6 m(2)g(-1)),最佳吡啶氮(2.44%)和高电导率(30785 S m)的微流控纤维(-1))可以更快地进行离子扩散和注入。利用这些非凡的优点,本研究将微型SC集成到柔性和织物基材中,以为视听电子设备供电。主要目的是阐明微流体技术对电极结构的重要作用,并促进可穿戴电子设备的发展。

著录项

  • 来源
    《Advanced Functional Materials》 |2017年第36期|1702493.1-1702493.11|共11页
  • 作者单位

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

    Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, 398 Ruoshui Rd, Suzhou 215125, Peoples R China;

    Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England;

    Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu Key Lab Fine Chem & Funct Polymer Mat, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fibers; microfluidics; micro-supercapacitors; nitrogen-doped graphene; porous structures;

    机译:纤维;微流体;微超级电容器;掺氮石墨烯;多孔结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号