首页> 外文期刊>Advanced Functional Materials >Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures
【24h】

Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures

机译:金纳米天线/ MoS2异质结构中的超快等离子热电子转移

获取原文
获取原文并翻译 | 示例
           

摘要

2D transition metal dichalcogenides are becoming attractive materials for novel photoelectric and photovoltaic applications due to their excellent optoelectric properties and accessible optical bandgap in the near-infrared to visible range. Devices utilizing 2D materials integrated with metal nanostructures have recently emerged as efficient schemes for hot electron-based photodetection. Metal-semiconductor heterostructures with low cost, simple procedure, and fast response time are crucial for the practical applications of optoelectric devices. In this paper, template-based sputtering method is used first to fabricate Au nanoantenna (NA)/MoS2 heterostructures with low cost, simple preparation, broad spectral response, and fast response time. Through the measurement of femtosecond pump-probe spectroscopy, it is demonstrated that plasmon-induced hot electron transfer takes place in the Au NA/MoS2 heterostructure on the order of 200 fs with an injected electron density of about 5.6 x 10(12) cm(-2). Moreover, the pump-power-dependent photoluminescence spectra confirm that the exciton energy of MoS2 can be enhanced, coupled, and reradiated by the Au NA. Such ultrafast plasmon-induced hot electron transfer in the metal-semiconductor heterostructure can enable novel 2D devices for light harvesting and photoelectric conversion.
机译:2D过渡金属二卤化物因其出色的光电性能和在近红外到可见光范围内可及的光学带隙而成为新型光电应用的诱人材料。利用与金属纳米结构集成的2D材料的设备近来已成为基于热电子的光电检测的有效方案。具有低成本,简单工艺和快速响应时间的金属-半导体异质结构对于光电器件的实际应用至关重要。本文首先使用基于模板的溅射方法来制备低成本,制备简单,光谱响应宽,响应时间快的金纳米天线(NA)/ MoS2异质结构。通过飞秒泵浦探针光谱法的测量,证明了等离子激元引起的热电子转移发生在Au NA / MoS2异质结构中,约为200 fs,注入电子密度约为5.6 x 10(12)cm( -2)。此外,依赖于泵浦功率的光致发光光谱证实,MoS2的激子能被Au NA增强,耦合和重辐射。金属-半导体异质结构中的这种超快等离激元诱导的热电子转移可以使新型2D器件用于光收集和光电转换。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第35期|6394-6401|共8页
  • 作者单位

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

    Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号