首页> 外文期刊>Advanced Functional Materials >Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2
【24h】

Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2

机译:直接观察多晶铁电HfO2中的负电容

获取原文
获取原文并翻译 | 示例
           

摘要

To further reduce the power dissipation in nanoscale transistors, the fundamental limit posed by the Boltzmann distribution of electrons has to be overcome. Stabilization of negative capacitance in a ferroelectric gate insulator can be used to achieve this by boosting the transistor gate voltage. Up to now, negative capacitance is only directly observed in polymer and perovskite ferroelectrics, which are incompatible with semiconductor manufacturing. Recently discovered HfO2-based ferroelectrics, on the other hand, are ideally suited for this application because of their high scalability and semiconductor process compatibility. Here, for the first time, a direct measurement of negative capacitance in polycrystalline HfO2-based thin films is reported. Decreasing voltage with increasing charge transients are observed in 18 and 27 nm thin Gd:HfO2 capacitors in series with an external resistor. Furthermore, a multigrain Landau-Khalatnikov model is developed to successfully simulate this transient behavior in polycrystalline ferroelectrics with nucleation limited switching dynamics. Structural requirements for negative capacitance in such materials are discussed. These results demonstrate that negative capacitance effects are not limited to epitaxial ferroelectrics, thus significantly extending the range of potential applications.
机译:为了进一步减少纳米级晶体管的功耗,必须克服由电子的玻耳兹曼分布造成的基本限制。通过提高晶体管栅极电压,可以使用铁电栅极绝缘体中负电容的稳定来实现这一点。到目前为止,仅在聚合物和钙钛矿铁电体中直接观察到负电容,这与半导体制造不兼容。另一方面,最近发现的基于HfO2的铁电体由于其高可扩展性和半导体工艺兼容性而非常适合该应用。在这里,首次报道了直接测量基于HfO2的多晶薄膜中的负电容。在与外部电阻器串联的18和27 nm薄Gd:HfO2电容器中观察到电压随电荷瞬态的增加而降低。此外,建立了多晶粒的Landau-Khalatnikov模型来成功模拟具有成核作用受限的开关动力学的多晶铁电体中的这种瞬态行为。讨论了这种材料中负电容的结构要求。这些结果表明,负电容效应不仅限于外延铁电体,因此极大地扩展了潜在的应用范围。

著录项

  • 来源
    《Advanced Functional Materials》 |2016年第47期|8643-8649|共7页
  • 作者单位

    NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany|Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94270 USA;

    NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany;

    Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94270 USA;

    Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94270 USA;

    NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany|Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94270 USA|Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94270 USA;

    NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany;

    NaMLab gGmbH, Noethnitzer Str 64, D-01187 Dresden, Germany|Tech Univ Dresden, Chair Nanoelect Mat, D-01069 Dresden, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号