首页> 外文期刊>Advanced Functional Materials >All-Metallic Vertical Transistors Based on Stacked Dirac Materials
【24h】

All-Metallic Vertical Transistors Based on Stacked Dirac Materials

机译:基于堆叠狄拉克材料的全金属垂直晶体管

获取原文
获取原文并翻译 | 示例
           

摘要

It is an ongoing pursuit to use metal as a channel material in a field effect transistor. All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac cone of one material to the one of the other material is therefore forbidden without assistance of phonon because of momentum mismatch. First-principles quantum transport simulations of the all-metallic vertical Dirac material heterostructure devices confirm the existence of a transport gap of over 0.4 eV, accompanied by a switching ratio of over 10~4. Such a striking behavior is robust against the relative rotation between the two Dirac materials and can be extended to twisted bilayer graphene. Therefore, all-metallic junction can be a semiconductor and novel avenue is opened up for Dirac material vertical structures in high-performance devices without opening their band gaps.
机译:在场效应晶体管中使用金属作为沟道材料是一种持续的追求。所有金属晶体管都可以由原始的半金属狄拉克材料(例如石墨烯,硅烯和锗烯)制成,但是开/关电流比非常低。在由两种狄拉克材料组成的垂直异质结构中,两种材料的狄拉克锥在弱层间范德华相互作用基础上经受住了密度泛函理论方法的影响,电子从一种材料的狄拉克锥到另一种材料的电子传输是因此,由于动量不匹配,禁止在没有声子帮助的情况下使用。全金属垂直狄拉克材料异质结构器件的第一性原理量子传输模拟证实存在超过0.4 eV的传输间隙,并伴随着超过10〜4的转换比。这样的打击行为对于两种狄拉克材料之间的相对旋转是鲁棒的,并且可以扩展到扭曲的双层石墨烯。因此,全金属结可以成为半导体,并且为高性能设备中的Dirac材料垂直结构开辟了新的途径,而无需打开它们的带隙。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第1期|68-77|共10页
  • 作者单位

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China;

    University of Colorado Boulder, Colorado 80309, USA;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China,Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871, P. R. China;

    School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055, P. R.China;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China,Collaborative Innovation Center of Quantum Matter Beijing 100871, P. R. China;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China,Collaborative Innovation Center of Quantum Matter Beijing 100871, P. R. China;

    Department of Nuclear Science and Engineering and Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA;

    State Key Laboratory for Mesoscopic Physics and Department of Physics Peking University Beijing 100871, P. R. China,Collaborative Innovation Center of Quantum Matter Beijing 100871, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号