首页> 外文期刊>Advanced Functional Materials >Under-Water Superaerophobic Pine-Shaped Pt Nanoarray Electrode for Ultrahigh-Performance Hydrogen Evolution
【24h】

Under-Water Superaerophobic Pine-Shaped Pt Nanoarray Electrode for Ultrahigh-Performance Hydrogen Evolution

机译:水下超好氧松形Pt纳米阵列电极用于超高性能氢气析出

获取原文
获取原文并翻译 | 示例
           

摘要

A pine-shaped Pt nanostructured electrode with under-water superaero-phobicity for ultrahigh and steady hydrogen evolution reaction (HER) performance is successfully fabricated by a facile and easily scalable electro-deposition technique. Due to the lower bubble adhesive force (11.5 ± 1.2 uN), the higher bubble contact angle (161.3° ± 3.4°) in aqueous solution, and the smaller size of bubbles release for pine-shaped Pt nanostructured electrode, the incomparable under-water superaerophobicity for final repellence of bubbles from submerged surface with ease, is successfully achieved, compared to that for nanosphere electrode and for Pt flat electrode. With the merits of superior under-water superaerophobicity and excellent nanoarray morphology, pine-shaped Pt nanostructured electrode with the ultrahigh electrocatalytic HER performance, excellent durability, no obvious current fluctuation, and dramatically fast current density increase at overpotential range (3.85 mA mV~(-1), 2.55 and 13.75 times higher than that for nanosphere electrode and for Pt flat electrode, respectively), is obtained, much superior to Pt nanosphere and flat electrodes. The successful introduction of under-water superaerophobicity to in-time repel as-formed H_2 bubbles may open up a new pathway for designing more efficient electrocatalysts with potentially practical utilization in the near future.
机译:通过一种便捷,易于扩展的电沉积技术,成功地制造了具有超高疏水性的水下超疏水性的​​松状Pt纳米结构电极,该电极具有超高且稳定的析氢反应(HER)性能。由于较低的气泡粘附力(11.5±1.2 uN),水溶液中较高的气泡接触角(161.3°±3.4°),以及松树形Pt纳米结构电极(在水下无法比拟的)释放的气泡尺寸较小与纳米球电极和Pt扁平电极相比,可以轻松实现超好氧性,从而可以轻松地最终淹没浸没表面的气泡。具有优异的水下超疏水性和出色的纳米阵列形态的优点,具有超高电催化HER性能,良好的耐久性,无明显的电流波动以及在超电势范围(3.85 mA mV〜( -1)分别比纳米球电极和Pt平板电极高2.55倍和13.75倍),远远优于Pt纳米球和平板电极。成功地将水下超好氧性引入到水中,可以及时排斥形成的H_2气泡,这可能为设计更有效的电催化剂开辟一条新途径,并在不久的将来具有实际应用价值。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第11期|1737-1744|共8页
  • 作者单位

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P.O. Box 98, Beijing 100029, P.R. China;

    Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, P.R.China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号