首页> 外文期刊>Advanced Functional Materials >Constrained Order in Nanoporous Alumina with High Aspect Ratio: Smart Combination of Interference Lithography and Hard Anodization
【24h】

Constrained Order in Nanoporous Alumina with High Aspect Ratio: Smart Combination of Interference Lithography and Hard Anodization

机译:高纵横比的纳米多孔氧化铝中的受约束的顺序:干涉光刻和硬质阳极氧化的智能结合

获取原文
获取原文并翻译 | 示例
           

摘要

With only two matched processing steps, the fabrication of thick nanoporous alumina membranes with mono-oriented, perfect hexagonal packing of pores, and precise control of all structural parameters over large areas is demonstrated. The cylindrical pores are uniform in shape and widely tunable in their dimensions and spatial distribution, with aspect ratios as high as 500. In brief, electropolished aluminum is first patterned using three-beam interference lithography in a single step and then anodized in a hard regime. The periodic concavities in the aluminum surface guide the pore nucleation, and the self-ordering phenomenon guarantees the maintenance of the predefined arrangement throughout the entire layer. In contrast to other methods, the interpore distance can be easily adjusted, the porous layer is not limited in thickness, no prefabricated stamps are involved, and the periodic pattern can be easily reproduced without risk of degradation. The approach overcomes the time, cost, and scale limitations of other existing processes. These membranes are well-suited for the templated fabrication of perfectly ordered arrays of highly uniform 1D nanostructures. Thus, the application fields of these functional membranes are diverse: magneto-optical and opto-electronic devices, photonic crystals, solar cells, fuel cells, and chemical and biochemical sensing systems, to name a few.
机译:仅需两个匹配的处理步骤,就可以制造出厚的纳米多孔氧化铝膜,该膜具有单向,完美的六边形孔堆积以及大面积上所有结构参数的精确控制。圆柱孔的形状均匀,尺寸和空间分布可调整,宽高比高达500。简而言之,首先使用三束干涉光刻法在一个步骤中对电解抛光铝进行构图,然后在硬状态下对其进行阳极氧化。铝表面的周期性凹面引导孔的形核,并且自序现象保证了整个层中预定排列的维持。与其他方法相比,可以容易地调节孔间距,不限制多孔层的厚度,不涉及预制印模,并且可以容易地复制周期性图案而没有退化的风险。该方法克服了其他现有过程的时间,成本和规模限制。这些膜非常适合用于模板化制造高度均匀的一维纳米结构的完美有序阵列。因此,这些功能膜的应用领域是多种多样的:磁光和光电设备,光子晶体,太阳能电池,燃料电池以及化学和生化传感系统,仅举几例。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第13期|1857-1863|共7页
  • 作者单位

    Institute of Applied Physics Universitaet Hamburg Jungiusstr. 11, 20355, Hamburg,Germany;

    Institute of Applied Physics Universitaet Hamburg Jungiusstr. 11, 20355, Hamburg,Germany;

    Institute of Applied Physics Universitaet Hamburg Jungiusstr. 11, 20355, Hamburg,Germany;

    Institute of Applied Physics Universitaet Hamburg Jungiusstr. 11, 20355, Hamburg,Germany;

    Institute of Applied Physics Universitaet Hamburg Jungiusstr. 11, 20355, Hamburg,Germany;

    Department of Physics University of Oviedo Calvo Sotelo s, 33007, Oviedo, Spain;

    Department of Physics University of Oviedo Calvo Sotelo s, 33007, Oviedo, Spain;

    Institute of Applied Physics Universitaet Hamburg Jungiusstr. 11, 20355, Hamburg,Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号