首页> 外文期刊>Advanced Functional Materials >Modification of the Gallium-Doped Zinc Oxide Surface with Self-Assembled Monolayers of Phosphonic Acids: A Joint Theoretical and Experimental Study
【24h】

Modification of the Gallium-Doped Zinc Oxide Surface with Self-Assembled Monolayers of Phosphonic Acids: A Joint Theoretical and Experimental Study

机译:自组装单层膦酸修饰镓掺杂氧化锌表面的联合理论和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Gallium-doped zinc oxide (CZO) surfaces, both bare and modified with chem-isorbed phosphonic acid (PA) molecules, are studied using a combination of density functional theory calculations and ultraviolet and X-ray photoelectron spectroscopy measurements. Excellent agreement between theory and experiment is obtained, which leads to an understanding of: ⅰ) the core-level binding energy shifts of the various oxygen atoms belonging to different surface sites and to the phosphonic acid molecules; ⅱ) the GZO work-function change upon surface modification, and; ⅲ) the energy level alignments of the frontier molecular orbitals of the PA molecules with respect to the valence band edge and Fermi level of the GZO surface. Importantly, both density of states calculations and experimental measurements of the valence band features demonstrate an increase in the density of states and changes in the characteristics of the valence band edge of GZO upon deposition of the phosphonic acid molecules. The new valence band features are associated with contributions from surface oxygen atoms near a defect site on the oxide surface and from the highest occupied molecular orbitals of the phosphonic acid molecules.
机译:使用密度泛函理论计算以及紫外和X射线光电子能谱测量的组合,研究了裸露的和经化学吸附的膦酸(PA)分子改性的掺杂镓的氧化锌(CZO)表面。理论与实验之间取得了极好的一致性,从而使人们对以下方面有了一个了解:ⅰ)属于不同表面位点和膦酸分子的各种氧原子的核心能级结合能移动; ⅱ)GZO功函数在表面改性后发生变化,并且; ⅲ)PA分子前沿分子轨道相对于GZO表面的价带边和费米能级的能级排列。重要的是,状态密度的计算和价带特征的实验测量都表明,在膦酸分子沉积后,状态密度增加并且GZO的价带边缘特性发生了变化。新的价带特征与氧化物表面缺陷位点附近的表面氧原子和膦酸分子的最高占据分子轨道的贡献有关。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第23期|3593-3603|共11页
  • 作者单位

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA;

    Department of Chemistry & Biochemistry University of Arizona Tucson, Arizona 85721-0041, USA;

    National Renewable Energy Laboratory 1617 Cole Blvd., Golden, Colorado 80401, USA;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA;

    National Renewable Energy Laboratory 1617 Cole Blvd., Golden, Colorado 80401, USA;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics Georgia Institute of Technology Atlanta, Georgia 30332-0400, USA,Department of Chemistry King Abdulaziz University Jeddah 21589, Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号