首页> 外文期刊>Advanced Functional Materials >Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors
【24h】

Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

机译:约束对高性能半结晶聚合物半导体微观结构和电荷传输的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films.
机译:改变结晶度最高,性能最高的聚合物半导体之一,即聚(2,5-双(3-十四烷基噻吩-2-基)噻吩并[3,2-b]噻吩)(PBTTT)的膜厚确定界面和限制对有机场效应晶体管(OFET)的微观结构和性能的影响。发现结晶质地和整个膜的结晶度在很大程度上取决于膜的厚度和热处理。微晶的角分布在膜厚度减小和热退火时都变窄。薄膜微结构的这些变化与薄膜晶体管的特性成对出现,并被证明与电荷载流子迁移率的变化直接相关。电荷传输受20 nm以下薄膜的薄膜结晶度和较厚薄膜的晶体取向支配。对于PBTTT,找到了最佳厚度,在该厚度下,未退火薄膜的迁移率达到最大,退火薄膜的迁移率达到最大值。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第16期|2091-2098|共8页
  • 作者单位

    Materials Science and Engineering 476 Lomita Mall, McCullough Building, Stanford, CA 94305, USA;

    Materials Science and Engineering 476 Lomita Mall, McCullough Building, Stanford, CA 94305, USA;

    Materials Science and Engineering 476 Lomita Mall, McCullough Building, Stanford, CA 94305, USA;

    Materials Science and Engineering 476 Lomita Mall, McCullough Building, Stanford, CA 94305, USA;

    Department of Chemistry Imperial College London, SW7 2AZ, UK;

    Department of Chemistry Imperial College London, SW7 2AZ, UK;

    Department of Chemistry Imperial College London, SW7 2AZ, UK;

    Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;

    Materials Science and Engineering 476 Lomita Mall, McCullough Building, Stanford, CA 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号