...
首页> 外文期刊>Advanced Functional Materials >Synchrotron X-Ray Scanning Tunneling Microscopy: Fingerprinting Near to Far Field Transitions on Cu(111) Induced by Synchrotron Radiation
【24h】

Synchrotron X-Ray Scanning Tunneling Microscopy: Fingerprinting Near to Far Field Transitions on Cu(111) Induced by Synchrotron Radiation

机译:同步加速器X射线扫描隧道显微镜:同步辐射引起的Cu(111)上的近到远场转变的指纹。

获取原文
获取原文并翻译 | 示例
           

摘要

The combination of the high spatial resolution of scanning tunneling microscopy with the chemical and magnetic contrast provided by synchrotron X-rays has the potential to allow a unique characterization of advanced functional materials. While the scanning probe provides the high spatial resolution, synchrotron X-rays that produce photo-excitations of core electrons add chemical and magnetic contrast. However, in order to realize the method's full potential it is essential to maintain tunneling conditions, even while high brilliance X-rays irradiate the sample surface. Different from conventional scanning tunneling microscopy, X-rays can cause a transition of the tip out of the tunneling regime. Monitoring the reaction of the z-piezo (the element that controls the tip to sample separation) alone is not sufficient, because a continuous tip current is obtained. As a solution, an unambiguous and direct way of fingerprinting such near to far field transitions of the tip that relies on the simultaneous analysis of the X-ray-induced tip and sample current is presented. This result is of considerable importance because it opens the path to the ultimate resolution in X-ray enhanced scanning tunneling microscopy.
机译:扫描隧道显微镜的高空间分辨率与同步加速器X射线提供的化学和磁性对比相结合,有可能允许对高级功能材料进行独特的表征。扫描探针提供高空间分辨率时,产生核心电子光激发的同步加速器X射线会增加化学和磁性对比。但是,为了充分发挥该方法的潜力,即使在高亮度X射线照射样品表面时,也必须保持隧穿条件。与传统的扫描隧道显微镜不同,X射线可导致尖端过渡出隧道状态。仅仅监测z压电(控制针尖到样品分离的元素)的反应是不够的,因为可以获得连续的针尖电流。作为解决方案,提出了一种清晰,直接的指纹识别方法,这种方法依赖于对X射线诱导的探针和样品电流的同时分析,从而使探针具有从近到远的转变。该结果非常重要,因为它为X射线增强扫描隧道显微镜提供了最终分辨率的途径。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第20期|2646-2652|共7页
  • 作者单位

    Advanced Photon Source & Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439, USA;

    Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

    Advanced Photon Source Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

    Electron Microscopy Center Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

    Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

    Advanced Photon Source Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

    Advanced Photon Source Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

    Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号