首页> 外文期刊>Advanced Functional Materials >High-Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Hole-Transporting Modifications
【24h】

High-Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Hole-Transporting Modifications

机译:高性能倒置聚合物太阳能电池:器件表征,光学建模和空穴传输修饰

获取原文
获取原文并翻译 | 示例
           

摘要

Although high power conversion efficiencies (PCE) have already been demonstrated in conventional structure polymer solar cells (PSCs), the development of high performance inverted structure polymer solar cells is still lagging behind despite their demonstrated superior stability and feasibility for roll-to-roll processing. To address this challenge, a detailed study of solution-processed, inverted-structure PSCs based on the blends of a low bandgap polymer, poly(indacenodithiophene-co-phananthrene-quinoxaline) (PIDT-PhanQ) and [6,6]-phenyl-C_(71)-butyric acid methyl ester (PC_(71)BM) as the bulk heterojunction (BHJ) layer is carried out. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of device geometry on photovoltaic performance. Excellent device performance can be achieved by optimizing the optical field distribution and spatial profiles of excitons generation within the active layer in different device configurations. In the inverted structure, because the peak of the excitons generation is located farther away from the electron-collecting electrode, a higher blending ratio of fullerene is required to provide higher electron mobility in the BH) for achieving good device performance.
机译:尽管在常规结构聚合物太阳能电池(PSC)中已经证明了高功率转换效率(PCE),但是高性能倒置结构聚合物太阳能电池的开发仍然滞后,尽管它们具有出色的稳定性和卷对卷加工的可行性。 。为了应对这一挑战,基于低带隙聚合物,聚(茚并二噻吩-共菲-喹喔啉)(PIDT-PhanQ)和[6,6]-苯基的共混物,对溶液加工的倒置结构的PSC进行了详细研究。进行-C_(71)-丁酸甲酯(PC_(71)BM)作为本体异质结(BHJ)层。执行所得器件的全面表征和光学建模,以了解器件几何形状对光伏性能的影响。通过优化不同器件配置中有源层内激子产生的光场分布和空间分布,可以实现出色的器件性能。在倒置结构中,由于激子产生的峰位于离电子收集电极较远的位置,因此需要更高的富勒烯共混比以在BH中提供更高的电子迁移率,以实现良好的器件性能。

著录项

  • 来源
    《Advanced Functional Materials》 |2012年第13期|p.2804-2811|共8页
  • 作者单位

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA,State Key Laboratory of Silicon Materials MOE Key Laboratory of Macromolecule Synthesis and Functionalization Zhejiang-California International Nanosystems Institute Zhejiang University Hangzhou 310027, P. R. China;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA,Department of Chemistry University of Washington Box 351700, Seattle, WA 98195, USA;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA,State Key Laboratory of Silicon Materials MOE Key Laboratory of Macromolecule Synthesis and Functionalization Zhejiang-California International Nanosystems Institute Zhejiang University Hangzhou 310027, P. R. China;

    Department of Materials Science and Engineering University of Washington BOX 352120, Seattle, Washington, 98195, USA,Department of Chemistry University of Washington Box 351700, Seattle, WA 98195, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号