首页> 外文期刊>Advanced Functional Materials >Highly Stable Au Nanoparticles with Tunable Spacing and Their Potential Application in Surface Plasmon Resonance Biosensors
【24h】

Highly Stable Au Nanoparticles with Tunable Spacing and Their Potential Application in Surface Plasmon Resonance Biosensors

机译:可调间距的高稳定性金纳米粒子及其在表面等离子体共振生物传感器中的潜在应用

获取原文
获取原文并翻译 | 示例
           

摘要

Colloidal Au-amplified surface plasmon resonance (SPR), like traditional SPR, is typically used to detect binding events on a thin noble metal film. The two major concerns in developing colloidal Au-amplified SPR lie in 1) the instability, manifested as a change in morphology following immersion in organic solvents and aqueous solutions, and 2) the uncontrollable interparticle distance, determining probe spacing and inducing steric hindrance between neighboring probe molecules. This may introduce uncertainties into such detecting techniques, degrade the sensitivity, and become the barricade hampering colloidal Au-based transducers from applications in sensing. In this paper, colloidal Au-amplified SPR transducers are produced by using ultrathin Au/Al_2O_3 nanocomposite films via a radio frequency magnetron co-sputtering method. Deposited Au/Al_2O_3 nanocomposite films exhibit superior stability, and average interparticle distances between Au nanoparticles with similar average sizes can be tuned by changing surface coverage. These characteristics are ascribed to the spacer function and rim confinement of dielectric Al_2O_3 and highlight their advantages for application in optimal nanoparticle-amplified SPR, especially when the probe size is smaller than the target molecule size. This importance is demonstrated here for the binding of protein (streptavidin) targets to the probe (biotin) surface. In this case, the dielectric matrix Al_2O_3 is a main contributor, behaving as a spacer, tuning the concentration of Au nanoparticles, and manipulating the average interparticle distance, and thus guaranteeing an appropriate number of biotin molecules and expected near-field coupling to obtain optimal sensing performance.
机译:像传统的SPR一样,胶体金放大的表面等离子体共振(SPR)通常用于检测贵金属薄膜上的结合事件。开发胶体金放大的SPR的两个主要问题在于:1)不稳定性,表现为浸入有机溶剂和水溶液后的形态变化,以及2)不可控制的粒子间距离,确定探针间距并在相邻分子之间产生位阻探针分子。这可能会给这种检测技术带来不确定性,降低灵敏度,并成为阻碍传感应用中基于胶金的换能器的障碍。本文采用超薄Au / Al_2O_3纳米复合薄膜通过射频磁控共溅射法制备了Au放大胶体换能器。沉积的Au / Al_2O_3纳米复合薄膜具有出色的稳定性,并且可以通过改变表面覆盖率来调整具有相似平均尺寸的Au纳米粒子之间的平均粒子间距离。这些特性归因于电介质Al_2O_3的间隔物功能和边缘限制,并突出了它们在最佳纳米粒子放大SPR中的应用优势,特别是当探针尺寸小于目标分子尺寸时。在此证明了这种重要性对于蛋白质(链霉亲和素)靶标与探针(生物素)表面的结合。在这种情况下,介电基体Al_2O_3是主要的贡献者,它充当间隔物,调节Au纳米颗粒的浓度,并控制平均颗粒间距离,从而保证适当数量的生物素分子和预期的近场耦合以获得最佳的感应性能。

著录项

  • 来源
    《Advanced Functional Materials》 |2010年第1期|78-86|共9页
  • 作者单位

    Nanotechnology Research Institute (NRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan);

    rnNanotechnology Research Institute (NRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan);

    rnPhotonics Research Institute (PRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan);

    rnPhotonics Research Institute (PRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan);

    rnNanotechnology Research Institute (NRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan);

    rnVoronoi Diagram Research Center Department of Industrial Engineering College of Engineering Hanyang University 17 Haengdang-dong, Seongdong-ku, Seoul 133-791 (Korea);

    rnVoronoi Diagram Research Center Department of Industrial Engineering College of Engineering Hanyang University 17 Haengdang-dong, Seongdong-ku, Seoul 133-791 (Korea);

    rnNanotechnology Research Institute (NRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan);

    rnNanotechnology Research Institute (NRI) National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号