首页> 外文期刊>Advanced Functional Materials >Genetically Engineered Phage Fibers and Coatings for Antibacterial Applications
【24h】

Genetically Engineered Phage Fibers and Coatings for Antibacterial Applications

机译:基因工程噬菌体纤维和抗菌涂层

获取原文
获取原文并翻译 | 示例
           

摘要

Multifunctionality can be imparted to protein-based fibers and coatings via either synthetic or biological approaches. Here, potent antimicrobial functionality of genetically engineered, phage-based fibers and fiber coatings, processed at room temperature, is demonstrated. Facile genetic engineering of the M13 virus (bacteriophage) genome leverages the well-known antibacterial properties of silver ions to kill bacteria. Predominant expression of negatively charged glutamic acid (E3) peptides on the pVIII major coat proteins of M13 bacteriophage enables solution-based, electrostatic binding of silver ions and subsequent reduction to metallic silver along the virus length. Antibacterial fibers of micrometer-scale diameters are constructed from such an E3-modified phage via wet-spinning and glutaraldehyde-crosslinking of the E3-modified viruses. Silverization of the free-standing fibers is confirmed via energy dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy, showing ~0.61 μg cm~(-1) of silver on E3-Ag fibers. This degree of silverization is threefold greater than that attainable for the unmodified M13-Ag fibers. Conferred bactericidal functionality is determined via live-dead staining and a modified disk-diffusion (Kirby-Bauer) measure of zone of inhibition (Zol) against Staphylococcus epidermidis and Escherichia coli bacterial strains. Live-dead staining and Zol distance measurements indicate increased bactericidal activity in the genetically engineered, silverized phage fibers. Coating of Kevlar fibers with silverized E3 phage exhibits antibacterial effects as well, with relatively smaller Zols attributable to the lower degree of silver loading attainable in these coatings. Such antimicrobial functionality is amenable to rapid incorporation within fiber-based textiles to reduce risks of infection, biofilm formation, or odor-based detection, with the potential to exploit the additional electronic and thermal conductivity of fully silverized phage fibers and coatings.
机译:可以通过合成或生物学方法将多功能性赋予基于蛋白质的纤维和涂层。在此,展示了在室温下加工的基因工程,基于噬菌体的纤维和纤维涂层的有效抗菌功能。 M13病毒(噬菌体)基因组的简便基因工程利用了众所周知的银离子抗菌特性来杀死细菌。带有负电荷的谷氨酸(E3)肽在M13噬菌体的pVIII主要外壳蛋白上的主要表达使银离子能够基于溶液进行静电结合,并随后沿病毒长度还原为金属银。通过E3修饰的病毒的湿纺和戊二醛交联,由这种E3修饰的噬菌体构建了微米级直径的抗菌纤维。通过能量色散光谱和电感耦合等离子体原子发射光谱法证实了自立式纤维的银化,在E3-Ag纤维上显示出约0.61μgcm〜(-1)的银。该银化度是未改性的M13-Ag纤维所能达到的三倍。通过活死染色和改良的圆盘扩散法(Kirby-Bauer)测定表皮葡萄球菌和大肠杆菌细菌菌株的抑制区(Zol),确定所赋予的杀菌功能。活死染色和Zol距离测量表明,基因工程化的银化噬菌体纤维中的杀菌活性增加。凯夫拉尔纤维的镀银E3噬菌体涂层也表现出抗菌作用,Zols相对较小,这归因于这些涂层中较低的银载量。这种抗菌功能适合于快速掺入纤维基纺织品中,以降低感染,生物膜形成或基于气味的检测的风险,并有可能利用完全银化的噬菌体纤维和涂层的附加电子和导热性。

著录项

  • 来源
    《Advanced Functional Materials》 |2010年第2期|209-214|共6页
  • 作者单位

    Department of Materials Science and Engineering Department of Biological Engineering Massachusetts Institute of Technology 8-237, 77 Massachusetts Ave., Cambridge, MA 02139 (USA);

    Department of Materials Science and Engineering Department of Biological Engineering Massachusetts Institute of Technology 8-237, 77 Massachusetts Ave., Cambridge, MA 02139 (USA);

    Department of Materials Science and Engineering Department of Biological Engineering Massachusetts Institute of Technology 8-237, 77 Massachusetts Ave., Cambridge, MA 02139 (USA);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号