首页> 外文期刊>Advanced Functional Materials >Design of Multilayered Nanostructures and Donor-Acceptor Interfaces in Solution-Processed Thin-Film Organic Solar Cells
【24h】

Design of Multilayered Nanostructures and Donor-Acceptor Interfaces in Solution-Processed Thin-Film Organic Solar Cells

机译:溶液处理薄膜有机太阳能电池中的多层纳米结构和施主-受主界面的设计

获取原文
获取原文并翻译 | 示例
           

摘要

Multilayered polymer thin-film solar cells have been fabricated by wet processes such as spin-coating and layer-by-layer deposition. Hole- and electron-transporting layers were prepared by spin-coating with poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and fullerene (C_(60)), respectively. The light-harvesting layer of poly-(p-phenylenevinylene) (PPV) was fabricated by layer-by-layer deposition of the PPV precursor cation and poly(sodium 4-styrenesulfonate) (PSS). The layer-by-layer technique enables us to control the layer thickness with nanometer precision and select the interfacial material at the donor-acceptor heterojunction. Optimizing the layered nanostructures. we obtained the best-performance device with a triple-layered structure of PEDOT:PSS|PPV|C_(60), where the thickness of the PPV layer was 11 nm, comparable to the diffusion length of the PPV singlet exciton. The external quantum efficiency spectrum was maximum (ca. 20%) around the absorption peak of PPV and the internal quantum efficiency was estimated to be as high as ca. 50% from a saturated photocurrent at a reverse bias of -3 V. The power conversion efficiency of the triple-layer solar cell was 0.26% under AM1.5G simulated solar illumination with 100mWcm~(-2) in air.
机译:多层聚合物薄膜太阳能电池已经通过湿法工艺制造,例如旋涂和逐层沉积。空穴和电子传输层分别通过旋涂有被聚(4-苯乙烯磺酸盐)(PEDOT:PSS)和富勒烯(C_(60))氧化的聚(3,4-乙撑二氧噻吩)制备。通过对PPV前体阳离子和聚(4-苯乙烯磺酸钠)(PSS)进行逐层沉积,制备了聚对(对亚苯基亚乙烯基)(PPV)的光收集层。逐层技术使我们能够以纳米精度控制层厚度,并选择施主-受主异质结处的界面材料。优化分层的纳米结构。我们获得了具有PEDOT:PSS | PPV | C_(60)三层结构的最佳性能器件,其中PPV层的厚度为11 nm,与PPV单重态激子的扩散长度相当。在PPV的吸收峰附近,外部量子效率谱最大(约20%),内部量子效率据估计高达ca。反向偏压为-3 V时饱和光电流产生的光功率为50%。在空气中100mWcm〜(-2)的AM1.5G模拟太阳光下,三层太阳能电池的功率转换效率为0.26%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号