...
首页> 外文期刊>Advanced Materials >Topotactic Phase Transition Driving Memristive Behavior
【24h】

Topotactic Phase Transition Driving Memristive Behavior

机译:定势相变驱动忆阻行为

获取原文
获取原文并翻译 | 示例
           

摘要

Redox-based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen-ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen-ion transport properties for resistive-switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X-ray absorption spectromicroscopy, it is demonstrated that the reversible redox-based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5, and the conductive perovskite phase, SrFeO3, gives rise to the resistive-switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric-field-induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in-plane direction of the device. In contrast, (111)-grown SrFeO2.5 devices with out-of-plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive-switching mechanism in SrFeOx-based memristive devices within the framework of metal-insulator topotactic phase transitions.
机译:基于氧化还原的忆阻器件是未来非易失性存储应用和神经形态电路最吸引人的候选器件之一,其性能取决于氧化还原过程和相应的氧离子动力学。在这方面,棕褐色SrFeO2.5最近被引入作为一种新型的材料平台,这是因为其具有出色的氧离子传输特性,可用于电阻开关存储设备。但是,引起电阻切换的潜在氧化还原过程仍然知之甚少。通过使用X射线吸收光谱学,证明了在绝缘的棕色菱镁矿相SrFeO2.5和导电钙钛矿相SrFeO3之间基于可逆氧化还原的正相转变导致了SrFeOx忆阻器件的电阻转换特性。此外,发现在(001)取向的SrFeO2.5器件中,电场诱导的相变在大面积上扩散,其中沿器件的面内方向排列了氧空位通道。相反,(111)生长的SrFeO2.5器件具有从底部电极到顶部电极的面外取向的氧空位通道,显示出局部相变。这些发现为金属绝缘子到正相转变框架内基于SrFeOx的忆阻器件的电阻转换机制提供了详细的见识。

著录项

  • 来源
    《Advanced Materials》 |2019年第40期|1903391.1-1903391.8|共8页
  • 作者单位

    Forschungszentrum Juelich GmbH Peter Greenberg Inst D-52425 Julich Germany|JARA FIT D-52425 Julich Germany|Hankuk Univ Foreign Studies Dept Phys Yongin 17035 South Korea|Hankuk Univ Foreign Studies Oxide Res Ctr Yongin 17035 South Korea;

    Forschungszentrum Juelich GmbH Peter Greenberg Inst D-52425 Julich Germany|JARA FIT D-52425 Julich Germany|Rhein Westfal TH Aachen IWE2 Inst Elect Mat D-52056 Aachen Germany;

    Forschungszentrum Juelich GmbH Peter Greenberg Inst D-52425 Julich Germany|JARA FIT D-52425 Julich Germany|Univ Duisburg Essen Fak Phys D-47048 Duisburg Germany|Univ Duisburg Essen Ctr Nanointegrat Duisburg Essen CENIDE D-47048 Duisburg Germany;

    Forschungszentrum Juelich GmbH Peter Greenberg Inst D-52425 Julich Germany|JARA FIT D-52425 Julich Germany;

    Forschungszentrum Juelich GmbH Peter Greenberg Inst D-52425 Julich Germany|JARA FIT D-52425 Julich Germany|Tech Univ Dortmund Expp Phys 6 D-44227 Dortmund Germany;

    Forschungszentrum Juelich GmbH Peter Greenberg Inst D-52425 Julich Germany|JARA FIT D-52425 Julich Germany|Univ Duisburg Essen Fak Phys D-47048 Duisburg Germany|Univ Duisburg Essen Ctr Nanointegrat Duisburg Essen CENIDE D-47048 Duisburg Germany|Univ Calif Davis Dept Phys Davis CA 95616 USA;

    Seoul Natl Univ Inst Adv Mat Dept Mat Sci & Engn & Res Seoul 08826 South Korea;

    Hankuk Univ Foreign Studies Dept Phys Yongin 17035 South Korea|Hankuk Univ Foreign Studies Oxide Res Ctr Yongin 17035 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    brownmillerite; resistive switching; topotactic phase transition; XPEEM;

    机译:褐闪石电阻切换电位相变;XPEEM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号