...
首页> 外文期刊>Advanced Materials >Correlating Nanomorphology with Charge-Transport Anisotropy in Conjugated-Polymer Thin Films
【24h】

Correlating Nanomorphology with Charge-Transport Anisotropy in Conjugated-Polymer Thin Films

机译:共轭聚合物薄膜中纳米形态与电荷传输各向异性的关系

获取原文
获取原文并翻译 | 示例
           

摘要

Flexible plastic devices such as cell phone displays and smart tags comprised of thin-film light-emitting diodes (LEDs) or field-effect transistors (FETs) as well as photovoltaics based on amorphous conjugated polymers promise low-cost fabrication and low energy consumption due to solution processing. While carrier type and mobility (μ) are key parameters in describing such semiconduct-rning materials, these quantities are not necessarily directionally independent in devices based on thin films. Indeed, charge-transport anisotropy in crystalline and liquid-crystalline semiconductors is a well-established phenomenon. For more amorphous materials, experiments over the past few decades have also found that the mobility laterally in the thin-film-transistor (TFT) geometry (μ_(FE)) is up to four orders of magnitude greater than that measured vertically in a diode configuration. By spin-coating and drop casting poly[2-methoxy-5-(2'-ethyl-hexyloxy)-l,4-phenylene vinylene] (MEH-PPV) films from two different solvents, we show that differences in measured mobility are due to an interfacial layer of several nanometers at the film/ substrate interface formed via spin-coating, having a higher electron density assisted by local chain alignment parallel to the substrate.
机译:柔性塑料设备,例如手机显示器和由薄膜发光二极管(LED)或场效应晶体管(FET)组成的智能标签,以及基于非晶共轭聚合物的光伏材料,有望实现低成本制造并降低能耗进行溶液处理。尽管载流子类型和迁移率(μ)是描述此类半导体材料的关键参数,但在基于薄膜的器件中,这些量不一定是方向独立的。实际上,晶体和液晶半导体中的电荷传输各向异性是一种公认​​的现象。对于更多的非晶态材料,过去几十年的实验还发现,薄膜晶体管(TFT)几何形状(μ_(FE))中的横向迁移率比二极管中垂直方向的迁移率高四个数量级。组态。通过旋涂和滴铸两种不同溶剂的聚[2-甲氧基-5-(2'-乙基-己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV)膜,我们发现测得的迁移率差异是由于在通过旋涂形成的膜/基底界面处的几纳米的界面层,通过平行于基底的局部链取向而具有较高的电子密度。

著录项

  • 来源
    《Advanced Materials》 |2009年第29期|2988-2992|共5页
  • 作者单位

    Institute of Atomic and Molecular Sciences Academia Sinica P. O. Box 23-166 Taipei 106 (Taiwan);

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 (Taiwan);

    Cornell High Energy Synchrotron Source (CHESS) Wilson Laboratory, Cornell University Ithaca, NY 14853 (USA);

    National Synchrotron Radiation Research Center Hsinchu 300 (Taiwan);

    Institute of Atomic and Molecular Sciences Academia Sinica P. O. Box 23-166 Taipei 106 (Taiwan);

    Department of Electrical Engineering Yuan Ze University Neili, Taoyuan 320 (Taiwan);

    Institute of Atomic and Molecular Sciences Academia Sinica P. O. Box 23-166 Taipei 106 (Taiwan);

    Department of Physics Tunghai University Taichung 407 (Taiwan);

    Department of Physics National Taiwan University Taipei 106 (Taiwan);

    Department of Chemical Engineering National Tsing Hua University Hsinchu 300 (Taiwan) Department of Chemistry Texas ASH University College Station, TX 77483 (USA);

    Department of Chemical Engineering National Tsing Hua University Hsinchu 300 (Taiwan);

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 (Taiwan);

    Institute of Atomic and Molecular Sciences Academia Sinica P. O. Box 23-166 Taipei 106 (Taiwan) Institute of Polymer Science and Engineering National Taiwan University Taipei 106 (Taiwan) Department of Physics National Taiwan University Taipei 106 (Taiwan);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号