首页> 外文期刊>Advanced Optical Materials >Resonant Dual-Grating Metamembranes Supporting Spectrally Narrow Bound States in the Continuum
【24h】

Resonant Dual-Grating Metamembranes Supporting Spectrally Narrow Bound States in the Continuum

机译:共振双光栅元膜支持连续谱中的光谱窄界。

获取原文
获取原文并翻译 | 示例
           

摘要

Properties of photonic devices fashioned with dual-grating metamaterials are reported. Enclosed by dual periodic regions, laterally propagating Bloch modes undergo radiative scattering and leaky-mode resonance whose properties differ markedly from those with single periodicity. The resonance signatures are sensitively controlled by the relative parameters of the periodic regions. In particular, if they are physically identical and separated by a half-wavelength, there ensues a bound state in the continuum (BIC) with extremely narrow resonance linewidth. On varying the separation between the periodic layers, the linewidth and corresponding Q can be tuned. This is confirmed experimentally via nanoimprinted dual-grating membranes. The experimental spectra agree well with rigorously computed spectra as well with an analytical model due to Avrutsky. At grating-depth and thickness values satisfying this model, three different types of BICs are supported by a single metamembrane. Two BICs appear at normal incidence at the Gamma point with one being a quasi-BIC on one band edge while a true symmetry-protected BIC resides on the other edge. Moreover, a quasi-BIC state away from the Gamma point in the same device is demonstrated. Whereas these results are based on a simple model with 1D periodicity, the primary properties will carry over to general 2D/3D photonic lattices.
机译:报告了用双光栅超材料形成的光子器件的特性。由双周期区域包围,横向传播的布洛赫模进行辐射散射和漏模共振,其特性与单周期的特性明显不同。共振特征由周期性区域的相对参数敏感地控制。特别是,如果它们在物理上是相同的并且被半个波长分开,则会在连续谱(BIC)中出现具有非常窄的谐振线宽的束缚状态。通过改变周期层之间的间隔,可以调整线宽和相应的Q。通过纳米压印双光栅膜实验证实了这一点。由于Avrutsky,实验光谱与严格计算的光谱以及分析模型非常吻合。在满足该模型的光栅深度和厚度值时,单个超膜可支持三种不同类型的BIC。在Bamma处的法线入射处出现两个BIC,其中一个在一个频带边缘上是准BIC,而真正的受对称保护的BIC则在另一边缘上。另外,说明了在同一装置中远离伽玛点的准BIC状态。尽管这些结果是基于具有1D周期性的简单模型,但主要属性仍将延续到普通2D / 3D光子晶格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号