...
首页> 外文期刊>The Aeronautical Journal >Modelling progressive failure of fibre reinforced laminated composites: mesh objective calculations
【24h】

Modelling progressive failure of fibre reinforced laminated composites: mesh objective calculations

机译:纤维增强层压复合材料的渐进破坏建模:网格目标计算

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamically-based work potential theory for modelling progressive damage and failure in fibre-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory, utilises separate ISVs for modelling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed, matrix microdamage is the dominant damage mechanism in continuous, fibre-reinforced, polymer matrix laminates, and its evolution is captured with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Using the stationarity of the total work potential with respect to each ISV, a set of thermo-dynamically consistent evolution equations for the ISVs is derived. Typically, failure evolution (i.e. post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method numerical setting. Therefore, consistent characteristic element lengths are introduced into the formulation of of the three failure potentials. The theory is implemented into commercial FEM software. The model is verified against experimental results from a laminated, quasi-isotropic, T800/3900-2 panel containing a central notch. Global load versus displacement, global load versus local strain gauge data, and macroscopic failure paths obtained from the models are compared to the experiments. Finally, a sensitivity study is performed on the failure parameters used in the model.
机译:提出了一种基于热力学的工作势理论,用于对纤维增强层压板的渐进式损伤和破坏进行建模。当前的多内部状态变量(ISV)公式(增强的Schapery理论)利用单独的ISV来建模损坏和故障的影响。损坏被认为是材料中任何结构变化的结果,表现为应力对应变响应的峰前非线性。相反,失效是导致峰后应变软化的任何机制演变的结果。据推测,基质微损伤是连续的,纤维增强的聚合物基质层压板的主要损伤机理,并且其演化可以通过单个ISV来捕获。引入了三个附加的ISV,以解决由于I型横向裂纹,II型横向裂纹和I型轴向失效引起的失效。利用总工作潜力相对于每个ISV的平稳性,得出了ISV的一组热力学一致的演化方程。通常,故障演变(即峰后应变软化)会导致在有限元方法数值设置内出现病理依赖网格的解决方案。因此,将一致的特征元素长度引入到三个故障可能性的公式中。该理论已在商用FEM软件中实现。该模型已通过包含中央缺口的层状准各向同性T800 / 3900-2面板的实验结果进行了验证。将从模型获得的总载荷与位移,总载荷与局部应变仪数据以及宏观失效路径进行比较。最后,对模型中使用的失效参数进行敏感性研究。

著录项

  • 来源
    《The Aeronautical Journal》 |2012年第1186期|1221-1246|共26页
  • 作者

    E. J. Pineda; A. M. Waas;

  • 作者单位

    NASA Glenn Research Center Cleveland, Ohio USA;

    University of Michigan Ann Arbor, Michigan USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号