...
首页> 外文期刊>Aerospace science and technology >Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust flutter boundary prediction
【24h】

Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust flutter boundary prediction

机译:含间隔参数的非定常空气动力学不确定降阶建模及其在鲁棒扑动边界预测中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Computational fluid dynamics based unsteady aerodynamic reduced-order models can significantly improve the efficiency of transonic aeroelastic analysis. In this paper, the concept of the conventional model reduction method based on the system identification theory is extended to aerodynamic subsystems with the consideration of computational fluid dynamics-induced interval uncertainties in simulation to get the aerodynamic reduced-order model as uncertain as the original aerodynamic subsystem. The interval estimation of identified coefficients involved in the uncertain reduced-order model is obtained by utilizing the first-order interval perturbation method. The stability problem of the interval aeroelastic state-space model formulated based on the constructed uncertain aerodynamic reduced-order model is equivalently transformed into a standard interval eigenvalue problem associated with a real non-symmetric interval matrix in which the interval bounds of eigenvalues are evaluated by virtue of the first-order interval matrix perturbation algorithm. A new stability criterion for the interval aeroelastic state matrix is defined to predict the robust flutter boundary of the concerned uncertain aeroelastic system. Two numerical examples with respect to the uncertain aerodynamic ROM constructions and robust flutter boundary predictions of the two-dimensional Isogai wing and the three-dimensional AGARD 445.6 wing in transonic regime are implemented to assess the validity and accuracy of the presented approach. The obtained results are also compared with Monte Carlo simulation solutions as well as numerical and experimental results in the literatures indicating that the proposed method can provide a more robust and conservative prediction on the flutter boundary of an aeroelastic system compared with conventional deterministic aeroelastic analysis approaches. (C) 2017 Elsevier Masson SAS. All rights reserved.
机译:基于计算流体动力学的非稳态气动降阶模型可以显着提高跨音速气动弹性分析的效率。本文将基于系统识别理论的常规模型简化方法的概念扩展到空气动力学子系统,并考虑了计算流体动力学在模拟中引起的区间不确定性,从而获得了与原始空气动力学一样不确定的空气动力学降阶模型。子系统。利用一阶间隔摄动法获得了不确定降阶模型中所识别系数的间隔估计。将基于构造的不确定空气动力学降阶模型制定的区间气动弹性状态空间模型的稳定性问题等效地转换为与真实非对称区间矩阵相关联的标准区间特征值问题,其中本征值的区间边界通过一阶间隔矩阵摄动算法的优点。定义了区间气动弹性状态矩阵的新稳定性准则,以预测相关不确定气动弹性系统的鲁棒扑动边界。针对不确定的空气动力学ROM构造以及二维Isogai机翼和三维AGARD 445.6机翼在跨音速状态下的稳健颤振边界预测,给出了两个数值示例,以评估该方法的有效性和准确性。所得结果还与蒙特卡罗模拟解决方案以及文献中的数值和实验结果进行了比较,表明与传统的确定性气动弹性分析方法相比,该方法可以对气动弹性系统的颤振边界提供更鲁棒和保守的预测。 (C)2017 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号