...
首页> 外文期刊>Aerospace science and technology >Unified model for low-Earth-orbital atomic-oxygen and atomic-oxygen/ultraviolet induced erosion of polymeric materials
【24h】

Unified model for low-Earth-orbital atomic-oxygen and atomic-oxygen/ultraviolet induced erosion of polymeric materials

机译:低地球轨道原子氧和原子氧/紫外线引起的聚合物材料侵蚀的统一模型

获取原文
获取原文并翻译 | 示例
           

摘要

An attempt is made by applying the chain reaction theory on the study of the interactions of atomic oxygen and atomic-oxygen/ultraviolet radiation (referred to as atomic-oxygen and synergistic effects, respectively) with polymeric materials. A unified kinetic model describing the non-branching chain reacting processes induced by atomic-oxygen and synergistic effects on hydrogen-containing polymers is first constructed. A unified form of equations in terms of mass change of polymeric materials is then deduced by incorporating the kinetic model into the mass loss model due to Colin et al. The resulting equations can be simplified under certain conditions, and analytic solutions describing the nonlinear mass variation can be obtained via the bulk reactive rate in the fractal reaction dynamics. For demonstration, the mass change associated with four types of polyethylene and Kapton were simulated, and the results are in good agreement with the experimental data. The dependencies of the mass loss on crystallinity, the fractal dimensions of erosion surface, and environmental factors for all four types of polyethylene are explained briefly. The theoretical framework is generalized to yield a mass evolution prediction formula for heterogeneous media induced by the diffusion-reaction process of incoming particles impinging into the media. Hereby, mass losses of polymers such as Teflon FEP, etc., as well as polymer-layered silicate nanocomposites caused, respectively, by the vacuum ultraviolet irradiation and oxygen plasma are simulated. The fitted curves agree well with the experimental data. The validation through the chosen materials reveals that the present unified model is capable of providing a tool for evaluating the nonlinear mass loss of both polymers and nanocomposites. (c) 2016 Elsevier Masson SAS. All rights reserved.
机译:通过将链反应理论应用于聚合物材料对原子氧和原子氧/紫外线辐射(分别称为原子氧和协同效应)的相互作用的研究,进行了尝试。首先建立一个统一的动力学模型,描述由原子氧诱导的非支链反应过程以及对含氢聚合物的协同作用。然后,通过将动力学模型合并到Colin等人的质量损失模型中,得出关于聚合物材料质量变化的方程式的统一形式。可以在某些条件下简化所得方程,并通过分形反应动力学中的整体反应速率获得描述非线性质量变化的解析解。为了演示,模拟了与四种类型的聚乙烯和Kapton相关的质量变化,结果与实验数据吻合良好。简要说明了所有四种类型的聚乙烯的质量损失与结晶度,侵蚀表面的分形维数以及环境因素的相关性。将理论框架进行一般化,以得出由入射粒子撞击介质的扩散反应过程引起的非均质介质的质量演化预测公式。因此,模拟了分别由真空紫外线照射和氧等离子体引起的诸如Teflon FEP等聚合物以及聚合物层状的硅酸盐纳米复合材料的质量损失。拟合曲线与实验数据吻合良好。通过所选材料的验证表明,本统一模型能够提供一种评估聚合物和纳米复合材料非线性质量损失的工具。 (c)2016年Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号