首页> 外文期刊>Aerospace science and technology >Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method
【24h】

Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method

机译:基于Lattice-Boltzmann方法的旋翼桨叶涡相互作用噪声预测

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this paper is to assess the accuracy, capabilities and computational performances of the Lattice-Boltzmann/Very Large Eddy Simulation Method to predict the unsteady aerodynamic loads, the rotor wake development and the noise radiation of helicopter rotors in strong Blade-Vortex Interaction conditions. The numerical flow solution is obtained by solving the explicit, transient and compressible Lattice-Boltzmann equation implemented in the high-fidelity CFD/CAA solver Simulia PowerFLOW (R). The acoustic far-field is computed by using the Ffwocs-Williams & Hawkings integral solution applied to a permeable surface encompassing the whole helicopter geometry. The employed benchmark configuration is the 40% geometrically and aeroelastically scaled model of a BO-105 4-bladed main rotor tested in the open-jet anechoic test section of the German-Dutch wind tunnel in the framework of the HART-II project. In the present study, only the baseline operating condition of the experimental campaign, without Higher-Harmonic Control enabled, is considered. All simulations are performed by assuming a rigid blade motion, but a computational strategy based on a combination of a rigid blade pitching motion and a transpiration velocity boundary condition applied on the blade surface is employed to take into account the blade elastic deformation motion measured during the experiments. As expected, modeling the blade elastic deformation leads to more accurate predictions of control settings, unsteady air-loads and noise footprint. The effects of the computational grid on the aerodynamic and aeroacoustic prediction is documented as well. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:本文旨在评估Lattice-Boltzmann / Very Large Eddy Simulation Method的准确性,功能和计算性能,以预测在强叶片-涡流相互作用中直升机的非稳态气动载荷,旋翼尾迹发展和噪声辐射条件。通过求解在高保真CFD / CAA求解器Simulia PowerFLOW(R)中实现的显式,瞬态和可压缩的Lattice-Boltzmann方程,可以获得数值流解。通过使用Ffwocs-Williams&Hawkings积分解决方案计算声场,该解决方案应用于包含整个直升机几何形状的可渗透表面。使用的基准配置是在HART-II项目框架下在德国-荷兰风洞的开放式消声测试段中测试的BO-105 4叶片主转子的40%几何形状和气动弹性比例模型。在本研究中,仅考虑了未启用高次谐波控制的实验战役的基线操作条件。所有模拟都是在假设叶片刚性运动的情况下执行的,但是采用了基于叶片刚性俯仰运动和施加在叶片表面上的蒸腾速度边界条件相结合的计算策略来考虑叶片在运动过程中测得的弹性变形运动。实验。不出所料,对叶片弹性变形进行建模可以更准确地预测控制设置,不稳定的空气负载和噪声足迹。还记录了计算网格对空气动力学和空气声学预测的影响。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号