...
首页> 外文期刊>Applied Mathematical Modelling >Numerical prediction of buoyancy driven micropolar fluid flow within uniformly heated eccentric annulus
【24h】

Numerical prediction of buoyancy driven micropolar fluid flow within uniformly heated eccentric annulus

机译:均匀加热的偏心环空中浮力驱动的微极性流体流动的数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the problem of buoyancy driven micropolar fluid flow within an annulus formed between two circular concentric/eccentric tubes has been numerically investigated using Fourier spectral method. The annulus inner wall is uniformly heated and maintained at constant heat flux while the outer wall is cooled and kept at constant temperature. The full governing equations of linear momentum, angular momentum and energy have been solved to give the details of flow and thermal fields. The heat convection process in the annulus is mainly controlled by modified Rayleigh number Ra, Prandtl number Pr, radius ratio Rr, eccentricity, e and material parameters of Micropolar fluid. The material parameters are dimensionless spin gradient viscosity A, dimensionless micro-inertia density B and dimensionless vortex viscosity D. The study considered a range of modified Ra up to 10~5 and is carried out at three values of Pr, namely Pr = 0.1,1.0 and 7.0, and at three values of parameter D, namely, D = 2,4,8 while the eccentricity is varied between -0.65 and +0.65. The radius ratio is fixed at 2.6 while the material parameters B and λ are assigned the value of 1. The effect of the controlling parameters on flow and thermal fields has been investigated with emphasis on the effect of these parameters on local and mean inner wall temperatures. The study has shown that for certain controlling parameters the steady mean temperature of inner wall of the annulus is maximum at a certain eccentricity. The study has also shown that as the parameter D increases the steady mean inner wall temperature increases. Moreover, the study has shown that as the Pr increases the mean inner wall temperature decreases.
机译:在本文中,浮力驱动的微极性流体在两个圆形同心/偏心管之间形成的环内流动的问题已使用傅立叶谱方法进行了数值研究。环形内壁被均匀加热并保持恒定的热通量,而外壁被冷却并保持恒定的温度。求解了线性动量,角动量和能量的完整控制方程,以给出流场和热场的详细信息。环空中的热对流过程主要由修正的瑞利数Ra,普朗特数Pr,半径比Rr,偏心率e和微极性流体的材料参数控制。材料参数为无量纲自旋梯度粘度A,无量纲微惯性密度B和无量纲涡旋粘度D。该研究考虑了高达10〜5的改性Ra范围,并在三个Pr值下进行,即Pr = 0.1, 1.0和7.0,以及参数D的三个值,即D = 2,4,8,而偏心率在-0.65和+0.65之间变化。半径比固定为2.6,同时将材料参数B和λ的值指定为1。已经研究了控制参数对流场和热场的影响,着重研究了这些参数对局部和平均内壁温度的影响。研究表明,对于某些控制参数,在一定的偏心率下,环内壁的稳定平均温度最高。研究还表明,随着参数D的增加,稳定的平均内壁温度也会升高。此外,研究表明,随着Pr的增加,平均内壁温度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号