首页> 外文期刊>Applied Physics Letters >Determination of the spin Hall angle by the inverse spin Hall effect, device level ferromagnetic resonance, and spin torque ferromagnetic resonance: A comparison of methods
【24h】

Determination of the spin Hall angle by the inverse spin Hall effect, device level ferromagnetic resonance, and spin torque ferromagnetic resonance: A comparison of methods

机译:逆旋转霍尔效应,装置水平铁磁共振和旋转扭矩铁磁共振的旋转霍尔角的测定:方法比较方法

获取原文
获取原文并翻译 | 示例
           

摘要

The spin torque ferromagnetic resonance (STFMR) is one of the popular methods for measurement of the spin Hall angle, θ_(sh). However, in order to accurately determine θ_(sh) from STFMR measurements, the acquired data must be carefully analyzed. The resonance linewidth should be determined to an accuracy of a fraction of an O_e, while the dynamical interaction leading to the measured response consists of the conventional field-induced ferromagnetic resonance (FMR), the spin-torque induced FMR, and the inverse spin Hall effect (ISHE). Additionally, the signal often deteriorates when DC is passed through the device. In this work, we compare the STFMR method with two other FMR-based methods that are used to extract θ_(sh). The first is a device-level FMR, and the second is based on the ISHE. We identify artifacts that are caused by the noise floor of the instrumentation that make the measurement of θ_(sh) illusive even when the signal to noise ratio seems to be reasonable. Additionally, we estimate a 10% error in θ_(sh) that results from neglecting the magnetic anisotropies as in conventional measurements. Overall, we find the STFMR to be the most robust of the three methods despite the complexity of the interaction taking place therein. The conclusions of our work lead to a more accurate determination of θ_(sh) and will assist in the search of novel materials for energy efficient spin-based applications.
机译:旋转扭矩铁磁共振(STFMR)是测量旋转霍尔角,θ_(SH)的流行方法之一。但是,为了准确地确定STFMR测量的θ_(SH),必须仔细分析所获取的数据。应确定谐振线宽应确定为O_E的一部分的准确性,而导致测量响应的动态相互作用包括传统的场诱导的铁磁共振(FMR),旋转扭矩诱导的FMR和逆旋转厅组成效果(ISHE)。另外,当DC通过设备时,信号通常会劣化。在这项工作中,我们将STFMR方法与用于提取θ_(SH)的其他基于FMR的方法进行比较。第一个是设备级FMR,第二个是基于ISHE。我们识别由仪器的噪声底板引起的工件,即使信号到噪声比似乎是合理的,即使在信号到噪声比似乎是合理的,也可以识别θ_(sh)的迹象。另外,我们估计θ_(sh)中的10%误差,这些误差是忽略磁各向异性,如在传统测量中。总的来说,尽管其中在其中发生的相互作用复杂性,但我们发现STFMR是三种方法中最强大的。我们的工作结论导致更准确的θ_(SH)的确定,并有助于寻找节能自旋基应用的新材料。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第4期|042401.1-042401.7|共7页
  • 作者单位

    Department of Applied Physics The Hebrew University of Jerusalem Jerusalem 91904 Israel;

    Department of Applied Physics The Hebrew University of Jerusalem Jerusalem 91904 Israel;

    Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany;

    IBM Research Division Almaden Research Center 650 Harry Rd. San Jose California 95120 USA;

    Department of Applied Physics The Hebrew University of Jerusalem Jerusalem 91904 Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号