首页> 外文期刊>Applied Surface Science >Low-frequency alternative-current magnetic susceptibility, photoelectric properties, and adhesive properties of Ni80Fe20 (X angstrom)/ZnO(500 angstrom) and ZnO(500 angstrom)/Ni80Fe20(Y angstrom) on glass substrate
【24h】

Low-frequency alternative-current magnetic susceptibility, photoelectric properties, and adhesive properties of Ni80Fe20 (X angstrom)/ZnO(500 angstrom) and ZnO(500 angstrom)/Ni80Fe20(Y angstrom) on glass substrate

机译:Ni80Fe20(X埃)/ ZnO(500埃)和ZnO(500埃)/ Ni80Fe20(Y埃)的低频交流磁化率,光电性能和粘合性能

获取原文
获取原文并翻译 | 示例
           

摘要

The following conditions are deposited: (a) glass/Ni80Fe20(X angstrom)/ZnO(500 angstrom) and (b) glass/ZnO(500 angstrom)/Ni80Fe20(Y angstrom), where each of X and Y is 1000 angstrom, 1500 angstrom, 2000 angstrom or 2500 angstrom. The substrate temperature was maintained at room temperature (RT), and post-annealing was performed with heating at (T-A) = 150 degrees C for 1 h or (T-A) = 250 degrees C for 1 h. The sputtering sequence and the thickness of the NiFe film were varied to study the effects of these factors on the low-frequency alternative-current magnetic susceptibility (chi(ac)), maximum chi(ac) with corresponding optimal resonance frequency (f(res)), transmission, electrical resistivity (rho), and surface energy of the multilayered glass/Ni80Fe20(X angstrom)/ZnO(500 angstrom) and glass/ZnO(500 angstrom)/Ni80Fe20(Y angstrom). Experimental results demonstrate that ZnO(500 angstrom)/Ni80Fe20(Y angstrom) is superior to Ni80Fe20/ZnO(500 angstrom) because diffraction from the ZnO (0 0 2) crystals at the bottom of ZnO(500 angstrom)/Ni80Fe20(Y angstrom) improves the magneto crystalline anisotropy of Ni80Fe20, improving its magnetic and photoelectrical properties. X-ray diffraction patterns (XRD) reveal that the ZnO (0 0 2), ZnO (2 2 0), and NiFe (1 1 1) peaks of ZnO(500 angstrom)/Ni80Fe20(Y angstrom) are more intense than those of Ni80Fe20/ZnO(500 angstrom) under three substrate conditions, indicating the ZnO (0 0 2) peak reflects magneto crystalline anisotropy in the crystalline NiFe layer of ZnO(500 angstrom)/Ni80Fe20(Y angstrom), yielding the highest chi(ac) of approximately 3.16 with an fres of 250 Hz upon post-annealing T-A = 250 degrees C for 1 h. The (1 1 1) diffracted intensity and grain size of the thicker and post-annealed Ni80Fe20 thin films exceeded those of the thinner and as-deposited Ni80Fe20 thin films. A spectral analyzer was used to measure transmittance through NiFe of various thicknesses. The transmittance declined slightly as the thickness and grain size increased, because increasing thickness reduced penetration. Post-annealing promoted grain growth, increased the average size of the grains and reduced transmittance. Both as-deposited glass/Ni80Fe20(X angstrom)/ZnO(500 angstrom) and as-deposited glass/ZnO(500 angstrom)/Ni80Fe20(Y angstrom) had the highest penetration, when X, Y = 1000 angstrom, and the highest transmittances of 87% and 93%, respectively. The highest transmittance of glass/ZnO(500 angstrom)/Ni80Fe20(Y angstrom) exceeded that of glass/Ni80Fe20(X angstrom)/ZnO(500 angstrom) owing to ZnO (0 0 2) crystallization. Furthermore, rho decreased as the Ni80Fe20 thickness increased, because grain boundaries and the surface of thin films scattered the electrons, so thinner films had greater resistance. Electrical measurements revealed that the maximum resistivities of glass/Ni80Fe20(1000 angstrom)/ZnO(500 angstrom) and glass/ZnO(500 angstrom)/Ni80Fe20(1000 angstrom) were 292 mu Omega cm and 288 mu Omega cm, and the resistivity declined as the thickness of the film increased.
机译:沉积以下条件:(a)玻璃/ Ni80Fe20(X埃)/ ZnO(500埃)和(b)玻璃/ ZnO(500埃)/ Ni80Fe20(Y埃),其中X和Y均为1000埃, 1500埃,2000埃或2500埃。将衬底温度保持在室温(RT),并在(T-A)= 150摄氏度或(T-A)= 250摄氏度加热1小时的条件下进行后退火。改变溅射顺序和NiFe膜的厚度以研究这些因素对低频交流磁化率(chi(ac)),最大chi(ac)以及相应的最佳谐振频率(f(res )),多层玻璃/ Ni80Fe20(X埃)/ ZnO(500埃)和玻璃/ ZnO(500埃)/ Ni80Fe20(Y埃)的透射率,电阻率(rho)和表面能。实验结果表明,ZnO(500埃)/ Ni80Fe20(Y埃)优于Ni80Fe20 / ZnO(500埃),因为来自Z​​nO(500埃)/ Ni80Fe20(Y埃)底部的ZnO(0 0 2)晶体的衍射)改善了Ni80Fe20的磁晶各向异性,改善了其磁和光电性能。 X射线衍射图谱(XRD)显示ZnO(500埃)/ Ni80Fe20(Y埃)的ZnO(0 0 2),ZnO(2 2 0)和NiFe(1 1 1)峰比那些强Ni80Fe20 / ZnO(500埃)在三个衬底条件下的磁化强度,表明ZnO(0 0 2)峰反映了ZnO(500埃)/ Ni80Fe20(Y埃)的结晶NiFe层中的磁晶各向异性,产生最高的chi(ac后退火TA = 250摄氏度,持续1 h时,频率约为250Hz的3.16)。较厚的和退火后的Ni80Fe20薄膜的(1 1 1)衍射强度和晶粒尺寸超过较薄的和沉积后的Ni80Fe20薄膜。使用光谱分析仪测量各种厚度的NiFe的透射率。随着厚度和晶粒尺寸的增加,透射率会略有下降,因为增加厚度会降低渗透率。退火后促进了晶粒的生长,增加了晶粒的平均尺寸并降低了透射率。当X,Y = 1000埃时,沉积玻璃/ Ni80Fe20(X埃)/ ZnO(500埃)和沉积玻璃/ ZnO(500埃)/ Ni80Fe20(Y埃)的穿透率最高,当X,Y = 1000埃时,穿透率最高。透射率分别为87%和93%。由于ZnO(0 0 2)的结晶,玻璃/ ZnO(500埃)/ Ni80Fe20(Y埃)的最高透射率超过了玻璃/ Ni80Fe20(X埃)/ ZnO(500埃)的最高透射率。此外,随着Ni80Fe20厚度的增加,rho减小,这是因为晶界和薄膜表面会散射电子,因此,薄膜越薄,电阻越大。电学测量表明,玻璃/ Ni80Fe20(1000埃)/ ZnO(500埃)和玻璃/ ZnO(500埃)/ Ni80Fe20(1000埃)的最大电阻率分别为292μOcm和288μOcm。随着膜的厚度增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号