首页> 外文期刊>Applied Surface Science >Many-body dissipative particle dynamics simulation of Newtonian and non-Newtonian nanodroplets spreading upon flat and textured substrates
【24h】

Many-body dissipative particle dynamics simulation of Newtonian and non-Newtonian nanodroplets spreading upon flat and textured substrates

机译:换织纹理基板蔓延的牛顿和非牛顿纳米辊的多体耗散粒子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

To deposit droplets on substrates efficiently is critical for many technological and industrial applications, which requires a systematic understanding of the droplet spreading process. In the paper, mesoscopic modeling of viscous nanodroplets spreading on different solid surfaces has been conducted by many-body dissipative particle dynamics. The influence of fluid viscosity has been particularly analyzed by changing the interaction parameters and the maximum droplet spreading diameter has been obtained. The dimensionless maximum spreading diameter is correlated to the Reynolds numbers (Re) and Weber numbers (We) as beta(ma)(x) = 0.7Re(0.)(1445)We(0.)(066). With the droplets partially attached by polymer chains to exhibit a shear-thinning non-Newtonian property, we demonstrate that the maximum spreading diameters are extremely different under a small initial kinetic energy, and gradually become consistent at a larger Weber number. Investigation of the spreading process on the intricate surfaces decorated by regular pillared structures shows a special expansion effect to improve the intrinsic wetting characteristic of the substrates, which is strongly controlled by the surface fraction of the pillared structures. Moreover, it is found that the fluid viscosity can profoundly affect the rebounding behavior of the droplet.
机译:在许多技术和工业应用中有效地存放基板上的液滴至关重要,这需要系统地了解液滴扩散过程。本文通过多体耗散粒子动力学进行了粘性纳米玻璃的介观模型。通过改变相互作用参数并获得最大液滴扩散直径,特别分析了流体粘度的影响。无量纲最大扩散直径与雷诺数(RE)和韦伯数(我们)作为β(ma)(x)= 0.7重(0.)(1445)(0.)(0.)(066)相关。对于通过聚合物链部分附接的液滴,以表现出剪切稀疏的非牛顿性质,我们证明在小初始动能下的最大展开直径非常不同,并且在较大的韦伯号逐渐变得一致。经常柱结构装饰的复杂表面上的传播过程的调查显示了改善基材的内在润湿特性的特殊膨胀效果,这通过柱状结构的表面分数强烈控制。此外,发现流体粘度可以深刻地影响液滴的反弹行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号